The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe

by
Andrew L. A. Johnson*
with 213 text figures, 11 plates,
4 tables and 2 appendices

ABSTRACT

This work deals systematically with all the pectinids and propeamussiids that occur in the Jurassic of Europe apart from the genus Weyla and a suite of distinctive species largely confined to the Tithonian of Alpine and southern Europe. By applying a species concept in which all members of an evolving lineage are accorded the same specific name, 34 species are recognised (3 in the genus Propeamussium, 3 in the genus Entolium, 4 in the genus Pseudopecten, 5 in the genus Spondylopecten, 6 in the genus Camptonectes, 3 in the genus Eopecten, 3 in the genus Chlamys and 7 in the genus Rudulopecten). Each species is described, with the aid of biometric information, and its taxonomy is discussed in detail. Following this, stratigraphic and geographic range is de-
scribed, the latter with the aid of maps (including pre-drift reconstructions for extra-European distribution). Sedimentary and faunal associations are set out and from this information an attempt is made to reconstruct palaeosynecology. Mode of life is inferred both by means of drawing analogies with living, morphologically similar species and through comparison with sets of morphological "paradigms" deduced for the various modes of life of scallops. In the section introducing the "paradigms" special attention is given to the likely function of shell plication. A concluding section for each species discusses origins and the rate and possible genetic basis of any phyletic changes.

KURZFASSUNG

Alle Pectiniden und Propeamussiiden, die im europäischen Jura vorkommen, werden in diesem Werk systematisch behandelt, abgesehen von einer Reihe besonderer Arten, die hauptsächlich im Tithon des alpinen und südeuropäischen Raumes vorkommen. Durch Verwendung eines Artbegriffes, wobei alle Mitglieder einer Abstammung als eine Art betrachtet werden, können 34 Arten anerkannt werden (3 in der Gattung Propeamussium, 3 in der Gattung Entolium, 4 in der Gattung Pserdopecten, 5 in der Gattung Spondylopecten, 6 in der Gattung Camptonectes, 3 in der Gattung Eopecten, 3 in der Gattung Chlamys, 7 in der Gattung Radulopecten). Jede Art wird beschrieben (mit Hilfe biometrischer Daten), und taxonomische Fragen werden gründlich diskutiert. Danach werden die stratigraphische und geographische Verbreitung
diskutiert, im letzten Fall mit Hilfe von Karten (einschließlich paläokontinentaler Zusammenstellungen für Daten außerhalb Europas). Sedimentologische und faunistische Beziehungen werden beschrieben, worauf versucht wird, ein Bild der Paläosynökologie zusammenzustellen. Auf die Lebensweise wird nicht nur durch Analogie mit lebenden, morphologisch ähnlichen Formen geschlossen, sondern auch durch einen Vergleich mit „Paradigmen", die für jede der verschiedenen Lebensweisen bei Kammuscheln abgeleitet werden. In der Entwicklung von „Paradigmen" wird die Rolle der Berippung bei Kammuscheln besonders berücksichtigt. Für jede Art wird in einem zusammenfassenden Abschnitt der Ursprung, die Geschwindigkeit und die vermutliche genetische Basis für phyletische Veränderungen diskutiert.

[^0]
CONTENTS

1. INTRODUCTION 11
Species concep 11
General features and descriptive terminology 12
Morphometry and methods of comparison 13
Presentation of results 13
Note on copper engravings 17
II. MORPHOLOGICAL PARADIGMS FOR THE BASIC MODES OF LIFE OF SCALIOPS 17
Reclining 18
Tight byssal fixation 18
Byssal swinging 19
Swimming 19
Qualificatory section concerning ornament 19
III. THE PALAEOBIOLOGY' OF THE ‘EUROPEAN JURASSIC' PECTINIDAE AND PROPEAMUSSIIDAE 22
Familial diagnoses 22
Family PROPEANUSSIIDAE Tucker Abbot 1954 22
Genus Propearmussium DE Grf gorio 1884 22
Amended diagnosis 22
Subgenus Propeamussium s. s. 22
Amended diagnosis 22
Discussion 22
Propeantussitum (Propeamussum) pumiltm (LAMARCK 1819) 23
Synonymy 23
2. Original diagnosis and description 23
3. Amended diagnosis 23
4. Amended description 24
5. Discussion 24
6. Stratigraphic range 25
7. Geographic range 25
8. Description of ecology 26
9. Interpretation of ecology 26
10. Functional morphology 17
11. Origins and evolution 27
Propeanussium (Propeamusstum) laeviradtatum (WAAGEN 1867) 28
Synonymy 28
12. Original diagnosis and description 28
13. Amended diagnosis 28
14. Amended description 29
15. Discussion 19
16. Stratigraplic range 19
17. Geographic range 30
18. Description of ecology 30
19. Interpretation of ecology 31
20. I'unctional morphology 31
21. Origins and evolution 32
Propcamussium (Propeamussitm) nonarmm (QUENSTEDT 1858) 32
Synonymy 32
22. Original diagnosis and description 32
23. Amended diagnosis 32
24. Amended description 32
25. Discussion 33
26. Stratigraphic range 33
27. Geographic range 33
28. Description of ecology 33
29. Interpretation of ecology 34
30. Functional morphology 34
31. Origins and evolution 34
Family PECTINIDAE Rafinesque 1815 35
Genus Entohnm Mlek 1865 35
Amended diagnosis 35
Discussion 35
Subgenus Entolums s. s. 35
Amended diagnosis 35
Discussion 35
Entolium (Entolium) lunare (Roemer 1839) 36
Synonymy 36
32. Original diagnosis and description 37
33. Amended diagnosis 37
34. Amended description 38
35. Discussion 40
36. Stratigraphic range 43
37. Geographic range 44
38. Description of ecology 44
39. Interpretation of ecology 44
40. Functional morphology 45
41. Origins and evolution 45
Entolium (Entolium) comeolum (YOUNG and Bird 1828) 45
Synonymy 45
42. Original diagnosis and description 47
43. Amended diagnosis 47
44. Amended description 47
45. Discussion 47
46. Stratigraphic range 52
47. Geographic range 53
48. Description of ecology 53
49. Interpretation of ecology 55
50. Functional morphology 55
51. Origins and evolution 55
Entolium (Entolum) orbiculare (J. Sowerby 1817) 55
Synonymy 55
52. Original diagnosis and description 56
53. Amended diagnosis 56
54. Amended description 57
55. Discussion 57
56. Stratigraphic range 58
57. Geographic range 59
58. Description of ecology 59
59. Interpretation of ecology 59
60. Functional morphology 59
61. Origins and evolution 59
Genus Pseudopecten Bayle 1878 60
Amended diagnosis 60
Discussion 60
Subgenus Pseudopecten s. s. 60
Amended diagnosis 60
Discussion 60
Pseudopecten (Pseudopecten) equivalvis (J. Sowerbi 1816) 61
Synonymy 61
62. Original diagnosis and description 62
63. Amended diagnosis 62
64. Amended description 62
65. Discussion 64
66. Stratigraphic range 67
67. Geographic range 68
68. Description of ecology 69
69. Interpretation of ecology 71
70. Functional morphology 72
71. Origins and evolution 72
Pseudopecten (Psendopectent) dentatus (J. DE C. SOWERBY 1827a). 73
Synonymy 73
72. Original diagnosis and description 74
73. Amended diagnosis 74
74. Amended description 74
75. Discussion 74
76. Stratigraphic range 75
77. Geographic range 75
78. Description of ecology 76
79. Interpretation of ecology 76
80. Functional morphology 76
81. Origins and evolution 77
Pseudopecten (Pseudopecten) vevrasenszs (Dumortier 1864) 77
Synonymy 77
82. Original diagnosis and description 77
83. Amended diagnosis 78
84. Amended description 78
t. Discussion 78
85. Stratigraphic range 79
86. Geographic range 79
87. Description of ecology 79
88. Interpretation of ecology 79
89. Functional morphology 79
90. Origins and evolution 79
Subgenus Echinopecten Brasil 1895 79
Amended diagnosis 79
Discussion. 80
Psendopecten (Echmopecten) barbatus (J. SOW'ERBY 1819) 80
Synonymy 80
91. Original diagnosis and description 80
92. Amended diagnosis 80
93. Amended description 80
94. Discussion 81
95. Stratigraphic range 81
96. Geographic range 81
97. Description of ecology 81
98. Interpretation of ecology 82
99. Functional morphology 82
100. Origins and evolution 83
Genus Spondylopecten Rofder 1882 83
Amended diagnosis 83
Discussion 83
Subgenus Plesiopecten Munier-Chalmas 1887 84
Amended diagnosis 84
Discussion. 84
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) 84
Synonymy 84
101. Original diagnosis and description 85
102. Amended diagnosis 85
103. Amended description 85
104. Discussion 86
105. Stratigraphic range 86
106. Geographic range 87
107. Description of ecology 87
108. Interpretation of ecology 88
109. Functional morphology 89
110. Origins and evolution 90
Subgenus Spondylopecten s.s. 90
Original diagnosis 90
Amended diagnosis 91
Discussion 91
Spondylopecten (Spondylopecten) palinurus (D'ORBIGNY 1850) 92
Synonymy 92
111. Original diagnosis and description 92
112. Amended diagnosis 92
113. Amended description 92
114. Discussion 93
115. Stratigraphic range 9.4
116. Geographic range 95
117. Description of ecology 95
118. Interpretation of ecology 96
119. Functional morphology 96
120. Origins and evolution 97
Spondylopecten (Spondylopecten) subpunctatus (MUNSTER 1833) 97
Synonymy 97
121. Original diagnosis and description 98
122. Amended diagnosis 98
123. Amended description 99
t. Discussion 99
124. Stratigraphic range 100
125. Geographic range 100
126. Description of ecology 100
127. Interpretation of ecology 101
128. Functional morphology 101
129. Origins and evolution 101
Spondylopecten (Spondylopecten) cardzatus (Quenstedt 1858) 102
Synonymy 102
130. Original diagnosis and description 102
131. Amended diagnosis 102
132. Amended description 102
133. Discussion 102
134. Stratigraphic range 103
135. Geographic range 103
136. Description of ecology 103
137. Interpretation of ecology 103
138. Functional morphology 103
139. Origins and evolution 103
Spondylopecten (Spondylopecten) globosus (QUENSTEDT 1843) 104
Synonymy 104
140. Original diagnosis and description 104
141. Amended diagnosis 104
142. Amended description 104
143. Discussion 104
144. Stratigraphic range 105
145. Geographic range 106
146. Description of ecology 106
147. Interpretation of ecology 106
148. Functional morphology 106
149. Origins and evolution 106
Genus Camptonectes Agassiz 1864 106
Amended diagnosis 106
Discussion 107
Subgenus Camptonectes s. 107
Amended diagnosis 107
Discussion 107
Camptonectes (Camptonectes) subulatus (MUNSTFR 1836) 107
Synonymy 107
150. Original diagnosis and description 108
151. Amended diagnosis 108
152. Amended description 109
153. Discussion 110
154. Stratigraphic range 112
155. Geographic range 112
156. Description of ecology 112
157. Interpretation of ecology 113
158. Functional morphology. 113
159. Origins and evolution 113
Camptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) 113
Synonymy I13
160. Original diagnosis and description 116
161. Diagnosis 116
162. Description 116
163. Discussion 117
164. Stratigraphic range 122
165. Geographic range I22
166. Description of ecology 123
167. Interpretation of ecology 123
168. Functional morphology 124
169. Origins and evolution I24
Camptonectes (Camptonectes) laminatus (J. SOwERby 1818) 124
Synonymy 124
170. Original diagnosis and description 125
171. Amended diagnosis 125
172. Amended description 125
173. Discussion 125
174. Stratigraphic range 127
175. Geographic range 128
176. Description of ecology 128
177. Interpretation of ecology 129
178. Functional morphology 129
179. Origins and evolution 129
Camptonectes (Camptonectes) virdunensis (Buvignifr 1852) 130
Synonymy 130
180. Original diagnosis and description 130
181. Amended diagnosis 131
182. Amended description 131
183. Discussion 131
184. Stratigraphic range 132
185. Geographic range 132
186. Description of ecology 132
187. Interpretation of ecology 132
188. Functional morphology 132
189. Origins and evolution 132
Subgenus Camptochlamys Arkell 1930a 133
Amended diagnosis 133
Discussion 133
Camptonectes (Camptochlamys) obscurus (J. SOwERBY 1818) 134
Synonymy 134
190. Original diagnosis and description 135
191. Amended diagnosis 135
192. Amended description 135
193. Discussion 136
194. Stratigraphic range 140
195. Geographic range 140
196. Description of ecology 141
197. 1nterpretation of ecology 142
198. Functional morphology 142
199. Origins and evolution 142
Camptonectes (Camptochlamys) clathratus (Rofmfr 1836) 143
Synonymy 143
200. Original diagnosis and description 145
201. Amended diagnosis 145
202. Amended description 146
203. Discussion 146
204. Stratigraphic range 147
205. Geographic range 148
206. Description of ecology 148
207. Interpretation of ecology 148
208. Functional morphology 149
209. Origins and evolution 149
Genus Eopecten Douvili e 1897 149
Amended diagnosis 149
Discussion 149
Eopecten relatus (Goldfuss 1833) 150
Synonymy 150
210. Original diagnosis and description 151
211. Amended diagnosis 152
212. Amended descripuion 152
213. Discussion 152
214. Stratigraphic range 153
215. Geographic range 153
216. Description of ecology 154
217. Interpretation of ecology 154
218. Functional morphology 154
219. Origins and evolution 154
Eopecten spondylordes (Rofmer 1836) 155
Synonymy 155
220. Original diagnosis and description 155
221. Amended diagnosis 156
222. Amended description 156
223. Discussion 156
224. Stratigraphic range 157
225. Geographic range 157
226. Description of ecology 157
227. Interpretation of ecology 158
228. Functional morphology 158
229. Origins and evolution 158
Eopecten abjectus (Phillips 1829) 158
Synonymy 158
230. Original diagnosis and description 159
231. Diagnosis 159
232. Description 159
233. Discussion 159
234. Stratigraphic range 160
235. Geographic range 160
236. Description of ecology 160
237. Interpretation of ecology 160
238. Functional morphology 160
239. Origins and evolution 160
Genus Chlamys Roding 1798 (non KOCH 1801) 161
Amended diagnosis 161
Discussion 161
Subgenus Chlamys s. s. 161
Amended diagnosis 161
Discussion 161
Chlamys (Chlamys) textorta (Schlothim 1820) 163
Synonymy 163
240. Original diagnosis and description 167
241. Amended diagnosis 167
242. Amended description 167
243. Discussion 169
244. Stratigraphic range 173
245. Geographic range 174
246. Description of ecology 175
247. Interpretation of ecology 177
248. Functional morphology 178
249. Origins and evolution 178
Chlamys (Cblumys) valoniensis (DEFRANCE 1825b) 179
Synonymy 179
250. Original diagnosis and description 180
251. Diagnosis 180
252. Description 180
253. Discussion 181
254. Stratigraphic range 183
255. Geographic range 184
256. Description of ecology 184
257. Interpretation of ecology 185
258. Functional morphology 185
259. Origins and evolution 185
Chlamys (Chlamys) pollux (D'OrbigNy 1850) 185
Synonymy 185
260. Original diagnosis and description 186
261. Amended diagnosis 186
262. Amended description 186
263. Discussion 186
264. Stratigraphic range 186
265. Geographic range 187
266. Description of ecology 187
267. Interpretation of ecology 187
268. Functional morphology 187
269. Origins and evolution 187
Genus Radulopecten Rollier 1911 187
Diagnosis 187
Discussion 187
Radulopecten vagans (J. DE C. Sowerby 1826a) 188
Synonymy 188
270. Original diagnosis and description 189
271. Amended diagnosis 190
272. Amended description 190
273. Discussion 191
274. Stratigraphic range 193
275. Geographic range 193
276. Description of ecology $19+$
277. Interpretation of ecology $19+$
278. Functional morphology 195
279. Origins and evolution 195
Radulopecten varians (Roemer 1836) 195
Synonymy 195
. Original diagnosis and description 196
280. Amended diagnosis 196
281. Amended description 196
282. Discussion 196
283. Stratigraphic range 198
284. Geographic range 198
285. Description of ecology 198
286. Interpretation of ecology 198
287. Functional morphology 198
288. Origins and evolution 198
Radulopecten strictus (MUNster 1833) 199
Synonymy 199
289. Original diagnosis and description 199
290. Amended diagnosis 200
291. Amended description 200
292. Discussion 200
293. Soratigraphic range 201
294. Geographic range 202
295. Description of ecology 202
296. Interpretation of ecology 202
297. Functional morpholog! 202
298. Origins and evolution 202
Rudulopecten fibrosus (J. Sowr-Rby 1816) 203
Synonymy 203
299. Original diagnosis and description 204
300. Amended diagnosis 204
301. Amended description 204
302. Discussion 205
303. Stratigraphic range 207
304. Geographic range 207
305. Description of ecology 208
. Interpretation of ecology 208
306. Functional morphology 208
307. Origins and evolution 209
Radulopecten scarburgensis (Y'OUNG and Birt) 1822) 209
Synonymy 209
308. Original diagnosis and description 210
309. Amended diagnosis 210
310. Amended description 210
311. Discussion 210
312. Stratigraphic range 214
313. Geographic range 214
314. Description of ecology 214
315. Interpretation of ecology 215
316. Functional morphology 215
317. Origins and evolution 216
Radulopecten sigmarmgertsts (ROLlIER 1915) 216
Synonymy 216
318. Original diagnosis and description 216
319. Amended diagnosis 216
320. Amended description 216
321. Discussion 216
322. Stratigraphic range 217
323. Geographic range 217
324. Description of ecology 217
325. Interpretation of ecology 217
326. Functional morphology 217
327. Origins and evolution 217
Radulopecten inequicostatiss (YOUNG and BIRD 1822) 217
Synonymy 217
328. Original diagnosis and description 219
329. Amended diagnosis 219
330. Amended description 219
331. Discussion 220
332. Stratigraphic range 223
333. Geographic range 223
334. Description of ecology 224
335. Interpretation of ecology 224
336. Functional morphology 224
337. Origins and evolution 224
BIBLIOGRAPHY 225
Appendix I - Species described from the European Jurassic but not discussed in the systematicsection of this work.235
Appendix II - Derivation of I_{50} values. 235

I. INTRODUCTION

The present work is in essence a somewhat condensed version of the author's doctoral thesis 'The palaeobiology of the bivalve family Pectinidae in the Jurassic of Europe' (Johnson, 1980). The Propeamussiidae were also included in the latter work, the word Pectinidae being interpreted sensu lato to mean all scallops. The original research was undertaken with a view to providing data for the then nascent debate over the tempo and mode of evolution (review in Gouid and El. dredge, 1977) and it is hoped to discuss the evolutionary implications of the data presented herein in a future publication.

In the course of the research the author undertook extensive field work in England (supplemented by studies in France and Germany) and examined museum material preserved in some 18 institutions spread through England, France and Germany. To all those who helped by making collections available for study and to the many others who assisted in the research (financed from the Burdett-Coutts Fund, University of Oxford) grateful thanks are offered. A full list of acknowledgements is presented in the author's thesis. Latterly, Mrs. V. Jenkins has been of the greatest assistance in typing corrections to the final draught of the manuscript.
The original study was succeeded by an investigation of the Upper Triassic and Lower Jurassic bivalves of alpine Europe. Relevant information from the latter research, financed by the Alexander-von-Humboldt-Stiftung and carried out at the Universitäts-Institut für Paläontologie und historische Geologie, München (where the author's collection is now housed), has been incorporated herein.

It proved impossible to gain more than a very superficial picture of the palaeobiology of a suite of distinctive species largely confined to the Tithonian of southern and alpine Europe. These species (for which d'Orbigny's (1850) name Pecten Insularum, Gemmellaro and Di Blasi's (1874) names P. nebrodensis, P.oppeli, P. billiemensis, P. siculus, P. polyzonites, P. acrorysus, P. poccilographus, P. zitteli and P. granmoproticus, Военм's (1883) names P. clare rugatus and P. frautdator and Blaschre's (1911) name P. polycyclus are available) are excluded from formal treatment herein. The genus Weyla, which occurs in Europe but is far more abundant in the Americas (Damborenea and Mancenido, 1979) is also excluded. Data on the extra-European distribution of the formally analysed species has however been included in order to present a more complete picture of the palaeobiology of these species.

Mode of life was judged in some cases by drawing analogies with living, morphologically similar forms. However, in an attempt to introduce more rigour into the analysis, a variant of the 'paradigm' approach (Rudwick, 1964) was also employed. The methodology here is comparison of the given shell morphology with sets of ideal dimensions and qualities (the paradigms - presented in Part II) devised for the various modes of life.

SPECIES CONCEPT

If significant morphological evolution occurs in some fraction of a species' total population or if it occurs throughout a species' total population in two or more different directions we have speciation, in the multiplicative sense of the word. Significant morphological evolution in the same direction throughout a species' total population (phyletic evolution) is speciation in the non-multiplicative sense of the word. A number of notable modern authors (e. g. Gould and El. dredge, 1977: 119; Stanley, 1978: 27, 28) have restricted their use of the term speciation to the multiplicative process in order to simplify discussion of the relative importance of this and the non-multiplicative mode of evolution. Since such discussion was one of the author's research objectives (see above) the 'modern' approach has been followed herein. It has the effect that separate specific names can only be applied to the separate branches emanating from a branching point in a phylogenetic tree (i. e. the branches themselves cannot be subdivided into separate species even if they signify considerable phyletic evolution). Whether all of the two or more descendant branches should be accorded different specific names must be decided by whether they can all be thought of as constituting fresh branches. This in turn must be decided by the mode of arrangement of the branches in the case in question. Four basic configurations can be envisaged (text fig. 1). In a) and b) it is clear that both D_{1} and D_{2} should be accorded a different specific name to A while in c) it is correspondingly clear that D_{2} must be accorded the same specific name as A . The latter is also the most logical solution to d) although it is less easy to perceive D_{2} and A as parts of the same branch. In practice, of course, only segments of the branches of a phylogenetic tree are known. Where such segments overlap temporally it is clear that they must be accorded separate specific names. In the case of stratigraphically separated but obviously related segments one can only guess whether they

Text fig. 1: The four basic potential branch configurations about a simple bifurcation in a phylogenetic tree.
constitute parts of the same branch and should therefore be accorded the same specific name, or whether they constitute parts of different branches and should therefore be accorded separate specific names. Thus in such cases application of the 'modern' species concept defeats the object for which it was originally introduced, that of clearly differentiating multiplicative from non-multiplicative processes of evolution. If such cases are common one might just as well employ a 'traditional' species concept. The author came across relatively few instances where an arbitrary decision had to be made and therefore feels justified in having employed the 'modern' concept.

Text fig. 2: Simplified interior view of the right valve of the extant pectinid Glortallum pallium; l. v. = left valve (adapted from WAL LER, 1972b: 228).

OORSAL

VENTRAL

RIGHT
Text fig, 3: Simplified anterior view of the extant pectinid Argopecten purpuratus (adapted from W'aller, 1969: 9).

GENERAL FEATURES AND DESCRIPTIVE TERMINOLOGY

Text figs. 2 and 3 illustrate major features of typical pectinids and serve to introduce most of the potentially unfamiliar morphological terms employed herein. A few of the terms appear to have been invented by W AlLER (1969) but most have a long history of usage. Orientation is conventional rather than anatomical with an imaginary line meeting the outer ligament perpendicularly at the resilium marking the boundary between the anterior and posterior shell sectors and an imaginary line perpendicular to the latter halfway between the resilium and the ventral margin marking the boundary between the dorsal and ventral shell sectors.

The outline of the left disc is almost always a mirror image of the right. The auricles of the left valve are, however, never extended more than fractionally dorsal of the outer ligament insertion (at least in post-Palaeozoic forms) while those of the right valve are usually at least noticeably (sometimes very markedly) extended beyond the outer ligament insertion. The base of the anterior auricle of the left valve is, moreover, rarely excavated to the same extent as that of the right valve.

The terms byssal notch and byssal sinus, referring respectively to excavations at the bases of the right and left anterior auricles, derive from the fact that the byssus (if any) is extended out of the shell (via the comb-like structure known as the ctenolium) in the area immediately ventral to the anterior auricles.

The terms equivalve/inequivalve and equilateral/inequilateral are used herein only with reference to that great majority of the shell constituted by the discs. Practically all scallops (i. e. pectinids and propeamussiids) have to be regarded as inequivalve and inequilateral if the auricles are included into consideration (see above).

Most of the terms such as lamellae, spines, tubercles used herein to describe ornament need no clarification. A few words are however called for in connection with the terms plicae, costae, striae and sulci. The term plicae is applied to radial corrugations affecting the entire thickness of the shell at the ventral margin. All other forms of radial ornament are termed costae except where very fine (relief less than about 0.1 mm), in which case the term striae is used. Sulci are the troughs between plicae and costae.

The terms original and initial are applied to the first formed or primary plicae, costae or striae in species which have sec-
ondary plicae, costae or striae (as a result either of intercalation or splitting). The term original is used where the first formed plicae, costae or striae in fact appear at the start of post-larval ontogeny and the term initial is used where the first-formed plicae, costae or striae appear somewhat later.

Text fig. 4: General dimensions measured in this study:1. In the plane of commissure (based on the specimen illustrated in text fig. 2; all parameters apart from N are also measurable in the left valve).

Text fig. 5: General dimensions measured in this study: 2. Perpendicular to the plane of commissure (based on the specimen illustrated in text fig. 3).

Text fig. 6: Special dimensions: measurable only in Propeamussium (P.) laeviradiatum and species of Entolium (based on a generalised Entolium right valve umbonal region, seen from the inside).

MORPHOMETRY AND METHODS OF COMPARISON

In an attempt to make the study more rigorous it was decided to back up the tried and tested 'eyeball' method of comparison with quantitative methods. To this end some 4000 specimens, representing perhaps half of the total numer examined, were measured in up to 15 parameters (usually about 6 or 7). Non-ornamental parameters are illustrated, together with the abbreviated names given to them for the purposes of easy graphing, in text-figs. 4-6. Their full names are listed in Table I together with clarificatory notes where necessary. All linear dimensions are measured either perpendicular or parallel to the hinge line. Ornamental parameters measured, where possible, include the number of plicae (PL), the number of ex-
ternal costae (EC) and the number of internal costae (IC). These need to clarification except in so far as it is necessary to say that folds merging into the disk flanks were not counted as plicae.

Linear dimensions were measured with vernier callipers. In equivalve species the parameter C was in some cases ascertained by measuring the convexity of a single valve and then doubling. The parameter UA was measured with a contact goniometer. It is technically rather difficult to measure UA accurately with a contact goniometer in species where the umbo projects beyond the hinge line and in small specimens of all species. In the latter case 'measuring error' is probably random but in the former it is likely that the actual values are systematically underestimated, the tendency to underestimate probably increasing with increasing umbonal projec tion. Measuring error is otherwise probably between I and 2° for UA and about 0.2 mm for linear measurements.

Analysis of the quantitative data was restricted to the plotting of bivariate graphs and histograms.

PRESENTATION OF RESULTS

A standard systematic format has been used. No attempt at a complete revision of the supra-specific classification has been made since for many groups this would require a considerable knowledge of forms occurring outside the Jurassic. At the generic level the author has followed the classification of the Treatise on Invertebrate Paleontology (HertLEIN, 1969) except where this is plainly inadequate. Classification at the familial level follows Waller's (1978) recent thoroughgoing reappraisal of the Pteriomorphia.

The abbreviations M, OD and SD after citations of type species (and specimens) mean, respectively, type species by monotypy, type species by original designation and type species by subsequent designation.

The layout of the analysis for each species is largely selfexplanatory. The attempt to determine mode of life by means of comparison with the paradigms devised in Part II is presented in Section 9 (Functional morphology) together with discussion of the function of particular shell features (partly drawing on the reasoning presented in the qualificatory section of Parr II) and of other related topics.

In the synonymy lists the author has employed a modified version (presented below) of Matthews' (1973) system for indicating degree of certainty and status of each reference. Although it seems complex the system is easily understood and appreciated in practice.

Where the specimens corresponding to the cited reference have been seen by the author or where the cited reference includes a description or illustration, the date of the reference is printed in normal type. The symbol v to the left of the date means that the author has seen the specimens corresponding to the cited reference. The superscript * signifies that the specimens are types of the cited species. The symbols v and v^{*} may be preceded by the symbols? and p (pars) implying, in the first case, that certain specimens seen by the author may correspond to those which are the subject of the cited reference, and in the second case, that the author has seen only some of the specimens corresponding to the cited reference.

Table 1: Non-ornamental parameters measured in this study (see text figs 4-6).

AH	- anterior hinge length; the length of the anterior auricle measured at the hinge line (i. e. just ventral of the outer ligament).
AHL	anterior half length; the perpendicular distance between a line at right angles to the hinge line touching the shell at its most anteriorly situated point and the most ventrally situated point on the shell (not graphed for any species).
AL	- separation of the auricular apices.
C	- convesity (measured between the crests of plicae/costae (where present) on the right and left valves).
H	- height; the maximum distance from the hinge line to the ventral margin measured in a direction perpendicular to the hinge line.
HAA	- height of the anterior auricle; the total height of the anterior auricle.
HAAD	- height of the anterior auricle dorsal of the hinge line.
I	- intersinal distance; the distance between the deepest point in the byssal notch or sinus (the most ventrally situated point in the disc/auricle suture in Entolium (E.) comeolum and E. $(E$.) orbiculare) and the posterior margin measured in a direction parallel to the hinge line.
L	- length; the perpendicular distance between two lines at right angles to the hinge line and tangential to the most anteriorly and posteriorly situated points on the shell.
N	- depth of the byssal notch; the perpendicular distance between two lines at right angles to the hinge line and tangential to the shell at the most anteriorly situated point on the anterior auricle of the right valve and the decpest point in the byssal notch (the depth of the byssal sinus (left valve) was not measured in this study).
PH	- posterior hinge length; the length of the anterior auricle measured at the hinge line (i. e. just ventral of the outer ligament).
PHL	- posterior half length; the perpendicular distance between a line at right angles to the hinge line touching the shell at its most posteriorly situated point and the most ventrally situated point on the shell (not graphed for any species).
UA	- umbonal angle; the angle between two lines tangential to the dorsal 'shoulders' of the disc and meeting at the apex of the umbo.

The symbols v and v^{*} may be followed by no symbol at all or by the symbols p, non, ?, (?) and ?p. Lack of a symbol implies that the specimens corresponding to the cited reference are considered to be within the author's hypodigm for the species under discussion (as described in the relevant Section 3). The symbols p and non imply, respectively, that some and none of the specimens are considered to be within the author's hypodign while? implies that the specimens may be within the author's hypodign. The symbol (?) implies less uncertainty than?. The symbol? has an obvious connotation. 'No symbol', p, non, ?, (?) and ?p need not, of course, necessarily be preceded by v or v^{*}.
Where a species is referred to only in an unillustrated faunal list and the corresponding material has not been seen by the author, the date of the reference is printed in italics. It is quite possible in some such cases to be practically certain of the affinities of the specimens (e. g. if the fauna of the horizon of derivation is well known from other sources) so such references are not preceded by a qualifying symbol, the italics being understood to convey the slight level of uncertainty. It is clear that? and (?) are the only symbols that may precede a date in italics.

The bivariate graphs are intended to illustrate the variation and, as far as this can be done with 'static' plots (Соск, 1966),
the ontogeny of the various shell dimensions. A minimum requirement of $7-10$ points was set for the inclusion of such graphs. Where they differ between the valves, right and left values vor any given parameter are separated and denoted by addition of the letter R or L as a subscript to the abbreviated name of the parameter. (Although there is no difference between the valves, right and left valve values for the intersinal distance in Entolium (E.) corneolum are plotted separately for the purposes of comparison with E. (E.) lunare.) Numbers in the graphs refer to points immediately above and to the left of them and correspond to numbers in the text accompanying citations of certain important (usually type) specimens or figures of specimens. The graduations on the axes are in millimetres in all cases except for UA, where the graduations are in degrees. Apart from in the case of the parameter UA, length has been employed as the standard measure of size except where this generates too few points for inclusion, in which case height has been employed. It was felt at the time of draughting that umbonal angle was not entirely independent of lengtle so this parameter was plotted against height rather than length wherever sufficient data presented itself. Subsequent consideration suggests, in fact, that umbonal angle and length are independent of each other in all real situations.

Where plical frequency histograms have been plotted, plical counts for right and left valves have been plotted together where the minimum plical count is 12 or more, even though there may be a difference of one plica between the valves. Where there is a difference between the valves and the minimum number of plicae is less than 12 , values for right and left valves have been separated and only one set plotted (the letter R or L is added as a subscript to PL as appropriate).

The single histogram for 1C (Propeamussum (P.) pumilum) uses both right and left valve data so no subscript is added to the abbreviation. However, the single graph involving EC (P. (P.) laeviradiatum) uses only left valve data so the letter L is added as a subscript to EC.
The locations and museum registration numbers of specimens represented in the bivariate plots and histograms can be obtained from the author on request.

Table 2: Explanation of abbreviated museum (and individual collection) names and lists of works whose partial or complete subject is pectinids and/or propeamussiids preserved in the museums.

BCM : City of Bristol Museum and Art Gallery (J. Sowerby, 1812-22).
BM : British Museum (Natural History), London (Arkell, 1929a-35a; Cox, 1935a, 1936a, 1952; Damon, 1880; Duef, 1978; Lycett, I863; Neale, 1956; Paris and Richardson, 1916; J. Sowfrby, 1812-22; J. de C. Sowerby, 1822a-46a, 1840b; Whidborne, 1883; Witchell, 1880).
BSPHG: Bayerische Staatssammlung für Paläontologie und historische Geologie, Munich (Boehm, 1883; Burckhardt, 1903; Goldfuss, 1833-40; Kuhn, 1935, 1936; Rothplftz, 1886; Schllppe, 1888; Waagen, 1867; Yamani, 1975).
DM : Institut des Sciences de la Terre, Université de Dijon.
ENSM : École Nationale Supérieure des Mines, Centre d’Études et de Recherches de Paléontologie Biostratigraphique, Université de Paris-Sud, Centre d'Orsay (Buvignier, 1852; Bayle, 1878; Dollfus, 1863; Duuville, 1916; Terquem and Jourdy, 1869).
GPIB : Institut für Paläontologie der Rhein. Friedr.-Wilhelms Universität, Bonn (Goldeuss, 1833-40).
GPIG : Geologisch-Paläontologisches Institut und Museum der Georg-August-Universität, Göttingen (Ernst, 1923).
GPIT : Universität Tübingen, Institut und Museum für Geologie und Paläontologie (Oppel, 1853; Quenstedt, 1858; Rollier, 1915; Staesche, 1926).
HM : Museum für Naturkunde an der Humboldt-Universität zu Berlin (Schlotheim, 1820).
IGS : Institute of Geological Sciences, Geological Survey, London (Hull, 1857; Melville, 1956; Morris and Lycett, 1851-55; Tawney, 1866).
MHNL : Museum d'Histoire Naturelle, Lyon (Dumortier, 1864-74).
MN : Museum Nationale d'Histoire Naturelle, Paris (Lamarck, 1819).
MNO : Museum Nationale d'Histoire Naturelle, Paris, d'Orbigny Collection (D'Orbig. NY, 1850).
MNP : Museum Nationale d'Histoire Naturelle, Paris, Peron Collection (Peron, 1905).
MNR : Museum Nationale d'Histoire Naturelle, Paris, Regional Collection.
MNS : Museum Nationale d'Histoire Naturelle, Paris, Systematic Collection (Cotteau, 1853; J.-C. Fischer, 1964; de Loriol, 1894, 1904; de Loriol and Lambert, 1893; de Loriol et al., 1872).
NM : École nationale Supérieure de Geologie, Nancy (Buyignier, 1852; Dechaseaux, 1936).

NMW : Naturhistorisches Museum, Vienna (Neumayr, 1871).
OUM : Oxford University Museum (Arkeli, 1926, 1929a-35a; Douglas and Arkell, 1932; Duff, 1978; Kirkaldy, 1963).
SbM : Woodend Museum, Scarborough.
ScM: Scunthorpe Museum and Art Gallery.
SM: Sedgwick Museum, Cambridge (Whidborne, 1883).
WM : Whitby Museum (Simpson, 1884).
YM : Yorkshire Museum, York (Phillips, 1829).

Table 3: Key to symbols used in graphs and diagrams ("the sense in wic these stage names are applied is explained on p. 16).

The abbrevations of museum names (and of the names of particular collections in museums) used herein are listed and explained in Table 2 together with works whose partial or complete subject is Jurassic scallops preserved in the various
museums. Non-parenthesised numbers following museum abbreviations in the text refer to individual specimens or small 'collectives' in a single tray except in the case of YM where the number refers to a box. Unfortunately in a number of museums unfigured material is not catalogued thus where reference is made to such material no more than the identity of the museum can be indicated. Where more than one specimen is involved as a reference to museum material and the actual number is of some importance, it is quoted in square brackets.

The species distribution maps have been compiled very largely from the citations listed in the synonymies. Details concerning the remaining information (derived from collections) can be obtained from the author on request. The reconstructions employed as the basis for charting extra-European distribution are those of Smith and Briden (1977). In the absence of precise details concerning place of discovery, specimens from the Caucasus (Pompeckj, 1897) have been symbolised on both the north and south sides of Tethys.

The symbols used in both the graphs and the maps to indicate stratigraphic horizon are explained in Table 3. Although the general lack of stratigraphic subdivision beyond the level of the stage masks some of the temporal changes in morphology and distribution mentioned in the text, it was felt that the plethora of symbols required to illustrate such changes would prevent appreciation of the larger scale changes.

The L. and \mathbf{U}. Pliensbachian have traditionally been regarded as subdivisions of almost stage rank. Separate symbols are therefore used for specimens from the L. and U. Pliensbachian in exception to the general rule of using the same symbol for specimens from all substages of a stage.
The zonal stratigraphic scheme presented in Table 4 and used throughout is that of Hallam (1975a). The author has followed Hallam in not recognising the Portlandian stage. Sediments in S. England and N. W. France which would traditionally be termed Portlandian are herein termed Tithonian. The term Kimmeridgian is applied sensu gallico (= L. Kimmeridgian sensu anglico).

Table 4: Zonal scheme (after Hallam, 1975 a) for the European Jurassic (see p. 16).

Appendix I is a list of those nominal pectinid and propeamussiid species described from the Jurassic of Europe which are not considered herein. Apart from names created for members of the highly distinctive group of species from the Tithonian of alpine and southern Europe and for members of the genus Weyla (see p. 11) it consists of names created for specimens which in the author's opinion are specifically indeterminate and names which, as a result of poor descriptions and figures and the unknown whereabouts of type material, can only be said to refer to 'pectinids' or 'propeamussiids'.

NOTE ON COPPER ENGRAVINGS

Many of the illustrations in the earlier works referred to herein were printed from copper engravings. Since this process involves reversal of the image it follows that for accurate reproduction the engraving must be a mirror image of the original specimen. A number of peculiar illustrations encountered in the course of research were quite clearly the result of a failure to make the initial reversal. In such cases measurements have been automatically reversed and in general no further comment has been made in the text.

I am grateful to R. J. Clefvely (British Museum; Nat. Hist.) for pointing out to me the reason for reversed illustrations.

II. MORPHOLOGICAL PARADIGMS FOR THE BASIC MODES OF LIFEOFSCALLOPS

The background to the inclusion of this piece is presented on p. 11 together with an explanation of the sense in which the term 'paradigm' is applied herein. The mode of lite categories are a combination of those of KAUFMANN (1969) and Stanley (1970). Although some living pectinids are known to be cemented (e. g. Hinnites) no paradigm is presented for this mode of life because it is easily recognisable in fossils from preservation. In formulating the paradigms the author has restricted his attention to easily observable external features of the shell.

[^1]probably of little consequence, for, as WALLER (1969) has pointed out, the jets of water expelled during swimming are actually controlled by the apposed velar lobes of the antero- und posterodorsal parts of the shell. It should be pointed out that swimming is quite possible in forms completely lacking disc gapes (e. g. Gloripallium pallium [see Waller, 1972b]).
Many living scallops actually have more than one mode of life (e. g. byssal swinging/tightly byssate, reclining/swimming) so this possibility has to be borne in mind in comparing fossil species to the paradigms. It is doubtful awhether swimming could ever be a full-time activity and certainly no living scallops have yet been discovered in which swimming is the exclusive mode of life.

RECLINING

Reclining is defined as lying on the sea floor without any means of attachment. All known living species with this habit lie on the right valve. In the lack of a means of attachment reclining species are susceptible to overturning and transport in high energy environments. This danger can be offset by having a large thick shell (increasing weight) with strong ornamentation on the right valve (increasing frictional resistance to movement). Low ornamentation on the left valve and generally low convexity will also help to lessen the risk of overturning and transport by reducing the profile of the shell and consequently its resistance to water movements. Given an inability to orientate the shell with respect to the direction of water movements an orbicular shape will be the best form for the disc as far as minimising the risk of overturning is concerned. A low convexity, orbicular disc is also the best form for reclining in low energy environments where the substrate is soft, since it spreads the weight of the shell and thereby inhibits sinkage. Small size (large surface area/weight ratio) and a thin shell will be similarly beneficial in this situation and strong ornament will be a disadvantage unless it extends beyond the disc margins as some form of protuberance with a high surface area/weight ratio and thus provides a 'snowshoe' effect. Large auricles would provide the same benefit on soft substrates but otherwise no advantage can be envisaged in their possession for a standard reclining mode of life.

TIGHT BYSSAL FIXATION

Tightly byssate scallops apply the right valve to the substrate and extend a short byssus over the margin of the right valve at the base of the anterior auricle. The great majority of living species attach themselves beneath or on the sides of hard objects.

Unless the right valve is of very low convexity any increase in the tension of the byssal (= pedal) retractor muscle beyond that strictly required to keep the animal in contact with the substrate tends to tilt the shell and present a large area for resistance to currents. There is thus a danger that the attachment
will be broken altogether. Tilting in a purely anterior-posterior sense can be minimised by having a small anterior auricle thus bringing the byssus closer to the tilting fulcrum and minimising its leverage. This, however, does nothing to minimise upward tilting of the ventral part of the shell and a better all-round solution (text fig. 7) is elongation of the dorsal part of the anterior auricle without addition to the ventral part (i. e. development of a deep byssal notch). A further improvement is achieved by a 'rightward' slope of the anterior auricle from posterior to anterior (Waller, 1972b). Possession of a narrow disc restricts the shell area presented to currents upon tilting.

Development of a deep byssal notch has the added advantage of putting the byssus in a position where it can resist an overturning force (such as that provided by currents meeting a convex right valve) acting on the posterior part of the shell (Stanley, 1970). However, assuming that it is impossible to increase the force exerted through the byssus it will be necessary in this situation for the depth of the byssal notch to increase allometrically (exponent 2) in order to maintain an attachment at all, since the moment exerted by the overturning force will be proportional to the cross-sectional area of shell perpendicular to its line of action.

Obviously possession of an initially deep byssal notch will create a certain amount of leeway, in forms lacking allometric growth of the byssal notch, before attachment is actually lost. With regard to the assumption concerning the force exerted through the byssus (i. e. that it is impossible to add to the number of byssal fibres so as to increase the basic strength of the byssus, and that of the bond between byssus and substrate, and thereby allow a greater force to be exerted by the byssal retractor without breaking the attachment) it must be doubted whether this is universally applicable. The assumption is made in the interests of facilitating ar least some sort of interpretation of fossil morphologies. Although the limited information on living scallops suggests that the assumption is reasonable, it is difficult to see why scallops should be constrained to retain the juvenile number of byssal threads.
The author is here only considering forms with the usual attachment position, beneath or against the sides of objects. The effective overturning moment will actually decrease during ontogeny in forms attached to the upper surfaces of objects since in this situation the overturning force has to contend

Text fig. 7: The effect of elongation of the dorsal part of the anterior auricle in restricting tilting (resulting from the combination of high byssal tension and a convex right valve) in the posterior and posteroventral shell regions (arrow $=$ byssal force).
with the weight of the animal (scaling as L^{3}). For all orientations on hard, smooth substrates it will be advantageous to have a minimally ornamented right valve so as to maximise the shell area in contact with the substrate and consequently maximise frictional resistance to lateral movement of the shell. On soft substrates frictional resistance will be increased by the development of some form of ornament that penetrates the substrate surface. Similar ornament on the left valve will also be of value if the substrate is so soft the the animal can insinuate itself. Otherwise it will be preferable for the ornament of the left valve to be subdued so as to minimise resistance to currents and consequently maintain lateral strain on the byssus at a tolerable level. A low convexity left valve will be advantageous for the same reason. In forms with the usual attachment position (see above) small size and thin valves will be beneficial in minimising the basic strain on the byssus resulting from the weight of the animal.
For forms tightly attached in confined spaces where the left valve comes into contact with the substrate upon gaping it will be advantageous for the hinge line to migrate ventrally so as to prevent restriction of the angle of gape with growth (Yonge, 1951).

Implied here are fissures that are essentially ' v '-shaped. Narrow, parallel-sided spaces are not colonisable, except by small forms, because shell growth rapidly makes it impossible to open the valves.
At all sizes subdued ornamentation and low convexity of the left valve together with a thin shell will allow the widest possible gape in the space available. Subdued ornament and low convexity will also maximise frictional resistance to movement if the substrate is hard and smooth (see above).

BYSSAL SWINGING

The nature of a byssal swinging mode of life needs no explanation. As in tightly fixed forms (see above) the byssus is extended between the valves at the base of the anterior auricle. In the absence of contact between the shell and the substrate to which the byssus is attached there is nothing to be gained from elongation of the dorsal part of the right valve anterior auricle and consequent production of a deep byssal notch. Strain on the byssus as the result of frictional drag between the shell and currents can be minimised by development of a low convexity posteriorly elongated disc (i. e. a shape that behaves like a windvane [KAufmann, 1969]) on which the ornament is subdued. Small size and thin valves will minimise the basic strain on the byssus resulting from the weight of the shell.

SWIMMING

Scallops achieve self-propulsion through the water in two ways. In one the valves clap together rapidly and a large volume of water is expelled ventrally; the shell therefore moves dorsally. Rapid adduction is also involved in the other method but here the velae (the muscular curtains formed from the inner mantle lobe of each valve) are employed in such a way as to restrict egress of the water to two small regions on either side of the auricles (see p. 17). Movement is therefore in a ventralward direction. In both processes the left valve is always uppermost. The first process, the 'escape response' of authors, is rarely observed in nature and will not be consid-
ered further. The second process is that which has come to be known as 'swimming'.
1n the swimming process thrust can be maximised by possession of low convexity valves so that almost all the water trapped between the valves is finally expelled (Thayer, 1972). Low convexity also minimises drag in the brief, post-adductive planing phase by rendering the shell streamlined. Since scallops are denser than water they must generate lift in order to progress by swimming. At the expense of forward advance this can be achieved simply by tilting the dorsal part of the shell downwards and thus translating some of the thrust from the water jets into an uplifting force. By departing from a paradigmatic form for generating thrust and minimising drag, lift may also be obtained hydrodynamically in the planing phase. A strongly right convex shell thrust through the water would generate lift in the same way as an angled board but such a shape would have such a poor thrust/drag ratio that, in spite of allowing jetting of water at a lower angle, it is very doubtful whether it could travel as far horizontally for a given expenditure of energy as a low convexity shell gaining lift purely from downward thrust. A shell of low right valve convexity but with moderate left valve convexity (a 'hydrofoil' shape) would also generate lift (by the Bernoulli Effect Stanley, 1970]) and in this case it seems likely that the thrust/drag ratio would not be so poor as to greatly counteract the advantage of a lower 'required jetting angle' and that therefore such a shell would travel at least as far horizontally for a given expenditure of energy as a shell with both valves of low convexity, gaining lift purely from downward thrust.
Since gravity scales as L^{3} while thrust and lift (together with drag) only scale as L^{2} it becomes steadily more difficult for scallops to swim as they approach large size (Gould, 1971). The size at which the capacity is lost can be increased by various muscular allometries (Gould, 1971; Thayer, 1972). As far as the hard parts are concerned swimming ability can be prolonged by ontogenetic increase in the umbonal angle, which serves to direct the water jets more nearly backwards and therefore maximises forward thrust (Stanley, 1970), and by length/height allometry, which increases the 'aspect ratio' and thereby minimises drag (Gould, 1971). Obviously an initially large umbonal angle and length/height ratio (i. e. in general terms a sub-orbicular rather than sub-ovate shape) will make for more efficient swimming in the juvenile and add to the effects of allometry in the adult. Further advantages are a thin shell (reducing weight) and subdued ornament (reducing drag). Large auricles would increase the resistance of the shell to sinking during the planing phase but would increase drag without adding anything to thrust or lift so it is very doubtful whether they would provide an overall advantage.

QUALIFICATORY' SECTION CONCERNING ORNAMENT

It will have been noted in the foregoing sections that strong ornament is an advantage for stability in certain situations. A number of other ways have been suggested in which strong ornamentation, in the form of radial plicae, might be beneficial to a scallop and it is as well to evaluate whether such ornament could indeed be of use in any other way for if so it will be necessary to play down the evidence of ornament, where
developed as radial plicae, in attempting to determine mode of life by means of the paradigms.

The most popular suggestions have been that plicae reduce the risk of the shell being broken (on the assumption that they increase strength in the same way as corrugations in a sheet of iron) by forces acting on it during life. On the grounds of results obtained by Preuschoft et al. (1975) from stress experiments, Reif (1978) has recently asserted that the basic assumption that plicae increase the overall strength of a shell is false and he has gone so far as to say that plicae actually decrease the overall strength of a shell. Such are in fact by no means necessary conclusions from the experimental results of PREUSCHOFT et al. The experiments performed by the latter authors consisted of the application of a force above the adductor muscle (to simulate the force exerted by the adductor during swimming) of previously 'stress-coated' scallops. (A stress-coat is a lacquer which cracks to show up lines of tension and compression on a stressed body.) The observed stress pattern indicated that plicae do indeed increase strength in the ventral sector but that they reduce strength in the dorsal sector. It can therefore be said that plicae do not increase the strength of a shell throughout and, since plicae actually weaken the shell in the dorsal sector, it can be said, on the assumption that the thickness and therefore basic strength of the shell in the dorsal sector is the same as in the ventral sector (and bearing in mind the fact that a shell is only as strong as its weakest point), that the overall strength of the shell is reduced by the development of plicae. The foregoing assumption, which Reif must have made to reach such conclusions as he did from the experimental results of Preuschof et al., is in fact invalid for at least a large number of species (Pecten maximus, one of the species used by Preuschoft et al., being a particularly good example of a species with markedly greater shell thickness in the dorsal sector) and taking into account the fact that the number of shell layers increases from the ventral to the dorsal margin (Tayiur et al., 1969) it seems practically certain to be generally invalid. If it is invalid to make the above-mentioned assumption then one is in no way forced by the results of the stress-coat experiments to draw the conclusion that plicae reduce the overall strength of a shell, for such experiments do not provide quantitative data to tell us whether plicae reduce strength in the dorsal sector to a value below that of unplicated shell in the ventral sector, which is the crucial point in deciding whether plicae increase or decrease the overall strength of a shell.

The whole question of whether plicae do or do not increase the overall strength of a shell is potentially answerable through breakage experiments with plicate and non-plicate shells of equal thickness and convexity (structural strength is enhanced by increased convexity [J. Currfy, pers. conmm. 1978]). The author has yet to find appropriate material for properly controlled experiments but crude hand trials using plicate and non-plicate shells of roughly equal thickness and convexity (belonging respectively to the extant species Chlumys opercularis and Ch. tigerinar) indicate strongly that plicac do increase overall strength (at least for those species [probably the very great majority; see above] whose shells are dorsally thickened to the same moderate extent as in Cb . operculders).

Although it now seems likely that the traditional assumption that plicae increase the overall strength of a shell is by and
large valid, this does not necessarily imply that the risk of breakage by forces acting on the shell during life is ever reduced by the development of plicae. A non-plicate shell may be quite adequate to withstand the forces. This certainly seems to be the case for the force generated in swimming (see above) for there exist actively swimming non-plicate pectinids of quite average shell thickness and convexity (e. g. Placopecten magellanicus (see Stanley, 1970]) in which there is no evidence of shell breakage during swimming. It also seems likely that all but the thinnest-shelled of scallops could withstand wave-generated forces up to the greatest magnitudes typically encountered, without the additional strength provided by plicae (cf. Verrile, 1897). Stanley (1970) has shown that a non-plicate shell of comparable thickness to that of an average scallop, if of somewhat greater convexity (that of Mytilus edulis), is strong enough to withstand wave forces of a magnitude far greater than any likely to be experienced by the majority of scallops (those developed on an exposed inter-tidial zone - most scallops are unable to colonise the inter-tidal zone because therr permanent gapes do not allow retention of water [to prevent tissue dehydration] between high tides). It is however probable that a non-plicate scallop shell of average thickness and convexity would be in great danger of being broken by predator-generated forces (as suggested originally by VER RILL, 1897). Extra-orally feeding starfish, which are certainly a major enemy of scallops in temperate waters at the present time (Mflcof and Bourve, 1964; Feder, 1970; Bloom, 1975), are known to be capable of generating forces up to 5.5 kg (Fmier and Christensen, 1966) in their efforts to pull bivalves apart (in order to facilitate entry of the stomach) and Carter (1968) reports shell breakage in the genus Venerupis (thicker and more inflated than typical scallops) as the result of attempted starfish predation. G. J. Vermeis (pers. comm., 1978) reports that extra-orally feeding starfish are rare in the tropics and therefore may not constitute a serious threat in these regions. He adds however that durophagous teleosts are a major enemy: of scallops in the tropics and such fish, which are capable of biting off chunks of coral (Stanley, 1970) would surely be able to crush non-plicate scallops of average thickness and convexity. Of the other animals which are known to be enemies of scallops at the present time (intra-orally feeding starfish [Brun, 1972]; plaice and cod [Medcof and Bourne, 1964]; herring guils [Gutsfil, 1931]; sea anemones, octopods and crabs [Bloom, 1975]) it seems very likely that octopods and crabs would also be able to crush non-plicate scallops of thickness and convexity equivalent to plicate forms.

Although it seems likely that plicae would be of benefit to a scallop of average thickness and convexity as far as passive resistance to attempted predation is concerned they would be disadvantageous (increasing drag) as far as the actual evasion of predators by swimming is concerned. (The use of the swimming response as a means of escape from predators is a well documented phenomenon $[\mathrm{e}$. g. Thomas and Grufydd, 1976].) It is possible to imagine that a smooth shell might in fact be just as good an adaptation towards predators as a strongly plicate shell because of its greater suitability for swimming. The abandonment of plication and the development of internal costae (which must surely strengthen the shell, albeit at somewhat greater material cost than plicae) in certain genera of scallops (e.g. Amusumm) would seem to represent an attempt to gain the best of both worlds.

Propeamussium also possesses internal costae and lacks plicae. However in this case plicae may be absent for constructional rather than functional reasons. Wallfr (1972a) is of the opinion that plicae could not be developed in a shell, such as that of Properamussium, with an outer prismatic layer in one or both valves.
The development of layers of divaricate fibres (which in conjunction with the usual layers of radially arranged foliae must produce a relatively strong structure by analogy with plywood) in the shells of certain non-plicate Entolizm and Camptonectes species might also represent an attempt to facilitate a 'siege' policy towards predators without at the same time impairing a 'fugitive' policy.
It has been suggested that plicae might be beneficial for resisting attempted predation in ways other than by increasing shell strength. Reif (1978) has suggested that by interlocking at the commissure plicae might prevent lateral twisting of the valves by starfish. Quite apart from the fact that there is no evidence that starfish ever attempt to twist the valves apart to gain access to the soft parts (the only technique recorded being a simple pull against the action of the adductor [FEDER and Christensen, 1966]) it must be doubted whether the long outer ligament of scallops would not perform this task quite adequately and thus obviate any need for further adaptation of the shell.

It should be noted that the scallop adductor is able to resist an opening force applied by a starfish for long periods (author's observations) so provided that the period of time which a starfish will devote to an attempt to open a scallop is sometimes less than the length of time for which the adductor can offer resistance (a not unreasonable assumption (cf. BURNFTT, 19601) increased shell strength will undoubtedly be beneficial in the context of this form of predation (as suggested on p. 20).
Carter (1968) has suggested that in the case of a failure to open the valves widely an undulating shell margin (as is associated with plication) might serve to prevent introduction
of more than a small part of a starfish's stomach into a bivalve. As Stanley (1970) has pointed out, the stomach of a starfish is so flexible that it is in fact very unlikely that its introduction would be severely hampered by an undulating shell margin.

One further way in which it has been suggested that plicae might be beneficial to a scallop is through their enlarging effect on the area of mantle tissue and thus of respiratory surface (Waller, 1969). It remains to be demonstrated whether a larger respiratory surface is of any particular benefit to a scallop.

To sum up the foregoing, in most of the ways suggested it is unlikely that plicae would be an advantage for a scallop. However, in the case of passive resistance to attempted predation it is quite likely that they would be of benefit to forms of average thickness and convexity, so in accordance with the approach advocated on p .19 the author has tended to disregard the evidence of strong ornament in the form of radial plicae in attempting to determine mode of life by means of comparison with the paradigms.

Extra-orally feeding starfish, at least, have been in existence as long as scallops (they are known from the U . Ordovician [Vermei], 1977]) so the possession of plicae would seem always to have been beneficial to torms of average thickness and convexity in a context other than that of stability.
Corrugations increase the strength of a sheet of material by increasing its moment of inertia (Wainwright et al., 1976). It can be seen from text fig. S (which shows moment of inertia values [$I_{5 n}$] for a range of sinusoidally corrugated sections of arbitrary length 50 mm ; the means by which I_{50} values were derived is presented in Appendix II) that for a sheet of any given thickness, corrugations of high amplitude and low wavelength give the greater increase in strength and it can therefore be inferred that plicae of high amplitude and low wavelength will be paradigmatic for passive resistance to at-

Text fig. 8: Moment of inertia (I_{50}) for a range of sinusoidally corrugated sections of length 50 mm (see Appendix II). Surfaces of equal 1_{50} would all slope generally towards the left and back if drawn in.
tempted predation. It can also be seen Irom text fig. 8 that plical intercalation will increase strength (through shortening wavelength) and will thus be of value as the animal grows and the potential leverage which a predator can exert to break the shell increases.

It should he noted that it is only the strength in bending which is greater than that of a flat plate of equivalent thickness and then only when bending is about the $x-x$ axis of the corrugated section. This is in fact the most likely situation in any form of predatory attack on a plicate shell. It should be further noted that corrugations also increase stiffness. This property may in fact be just as important as strength in the context of resisting attempted predation by animals, such as extra-orally feeding starfish, which attempt to pull the valves apart rather than crush them.
It seems very likely that forms of continuous comarginal ornament involving thickening of the shell (e. g. comarginal lamellae) woukd result in an increase in overall strength and thus be of benefit to a scallop of average thickness and convexity in the context of passive resistance to attempted predation.

The evidence of such ornament as continuous comarginal lamellae has therefore been played down, in the same way as For radial plicae, in attempting to determine mode of life by means of comparison with the paradigms.

In conjunction with some form of radial or divaricate ornament and against a background of appropriate 'grain' size, discontinuous comarginal lamellae (and to a rather lesser extent continuous comarginal lamellae) tend to camouflage a shell somewhat to the human eye. It cannot yet be said whether discontinuous comarginal lamellae actually camouflage the shell to visual predators (and thus whether the development of such ornament would be beneficial to a scallop in the context of avoiding predation) so in attempting to determine mode of life by means of comparison with the paradigms the author has not disregarded the evidence of discontinuous comarginal ornament except where it is at odds with the evidence of other aspects of morphology or with ecology.

III. SYSTEMATIC PALAEOBIOLOGY OF THE 'EUROPEAN JURASSIC' PECTINIDAE AND PROPEAMUSSIIDAE

FAMILIAL DIAGNOSES

Waller (1978) provides the following familial diagnoses:
Propeamussiidae - 'Byssate or free Pectinacea with outer, simple-prismatic calcitic layer on right valve present on main portion of disk throughout ontogeny; crossed-lamellar aragonite extending outside of pallial line, in some cases nearly to distal margins, and commonly covering hinge plate. Byssal notch without ctenolium even in early growth stages (now known to be present in one species - T. R. Waller, pers. comm. 1980). Mantle curtains commonly without guard tentacles'.

Pectinidae - 'Byssate, cemented, or unattached Pectinacea with outer, simple-prismatic calcitic layer on right valve generally present only in early growth stages, rarely absent altogether; crossed-lamellar aragonite restricted to area inside of pallial line or absent. Byssal notch with ctenolium, at least at early growth stage. Mantle curtains bearing guard tentacles'.

Family PROPEAMUSSIIDAE Tucker Abbott 1954 Genus Propeamussium De Grfgorio 1884

Type species. OD; Df Grfgorio 1884, p. 1; Pecten (Propeamussium) Cecilize De Grfgorio 1884, p. 1; Miocene, Sicily.

AMENDED DIAGNOSIS

'Small, thin, valves nearly equally convex; sculptured with concentric lines, LV commonly with radial striae or riblets; byssal notch moderately deep to slight; right anterior auricle of some shells with radial riblets; interior with radial riblets which usually extend to middle or to margin. L. Jur. - Rec., cosmop.' (Hertlein, 1969: N350).

Subgenus PROPEAMUSSIUM s.s.
(Synonyms etc. Propeamusium Dafl 1886 [nom. van.] Propreamusium Jackson 1890 [nom. null.] Paramusium Verrile 1897
Paramussium De Grfgorio 1898
[nom. null.]
Propeannessium Cossmann and Pisarro 1906 [nom. null.]
Occultamussium Korobrov 1937
Pseudopalliorum Orama $19+4$
Flavamussium Oyama 1951
Actinopecten Bonarelli 1951)

AMENDED DIAGNOSIS

-Valves rather flattened, usually gaping along lateral margins; byssal notch slight; internal ribs extend about half way (farther in some) to margin. L. Jur. - Rec., cosmop.' (HertLein 1969: N350)

DISCUSSION

In the Jurassic P. (Propeamussium) can be divided into three groups on the following basis:

1. 9-13 original internal costae terminating at approximately $7 / 8 \mathrm{H}$; dorsal margins of right valve extended slightly beyond hinge-line.
($=P$. (P.) pumilum).
2. 9-10 original internal costae terminating at approximately $7 / 8 \mathrm{H}$; dorsal margins of right valve extended into hornlike processes.
(= P. (P.) laeviradiatum).
3. 7-9 original internal costae increasing in number by intercalation to 18 , terminating at approximately $5 / 6 \mathrm{H}$; ap-
proximately straight dorsal margin in right valve.
($=P$. (P.) nonarium).

Propeamussium (Propeamussium) pumilum (Lamarck 1819)
Pl. I, Figs. 1-4, 7-9; text figs. 9-12.

Synonymy

1819 Pecten pumilus sp. nov; LAMARCK, p. 183.
(?) 1825a Pecten incrustatus sp. nov; DEFRANCE, p. 253.
(?) 1828 Pecten intusradiatus sp. nov; MUNSTER in KeferSTEIN, P. 574.
(?) 1832 Pecten intusstriatus sp. nov; MUNSTER in DE LA Beche, p. 386.
1832 Pecten contrarius sp. nov; v. Buch in DE LA Beche, p. 412, 423.
1833 Pecterr personatus sp. nov; GOlDEUss in ZiETEN, p. 68, pl. 52, figs. 2a, 2b.
$v^{\text {\$ }} 1836$ Pecten paradoxas sp. nov; MUNSTER in GOLDFUSS, p. 74, pl. 99, figs. 4a-f.

1836 Pecten personatus Goldfuss; Golnfuss, p. 75, pl. 99, fig. 5.
1839 Pecten personatus Goldfuss; v. Buch, p. 101.
v 1850 Pecten pumilus Lamarck; D'Orbigny, p. 257.
1852 Pecten incrustans Defrance; Bronn, p. 213, pl. 19, figs. 5a-c.
v 1852 Pectenpersonatus GOLDFuss; Quenstedt, p. 505, pl. 40, fig. 39.
non 1853 Pecten personatus Goldfuss; Morris and Lycett, p. 11, pl. 1, figs. 17, 17a.
v* 1853 Pectenamalthei sp. nov; Oppel, p. 77, pl. 4, fig. 9. 1858 Pecten incrustatus Defrance; Oppel, p. 262.
1858 Pecten pumilus Lamarck; Oppel, p. 419.
v 1858 Pecten contrarius V. Buch, Quenstedt, p. 258, pl. 36, figs. 15-17.
1858 Pecten undenarius sp. nov; Quenstedt, p. 321, pl. 44, fig. 14.
v 1858 Pecten personatus GOLDFUSS; Quenstedt, p. 337, pl. 46, figs. 21-24.
1860 Pecten pumilus Lamarck; COQUAND, p. 64.
? 1861 Pectenamaltheris Oppel;Stoliczka, p. 198, pl. 6, fig. 7.
1864 Pecten pumilus Lamarck; v. Seebach, p. 96.
1867 Pecten pumilus Lamarck; WaAGEN, p. 630.
(?) 1868 Pecten Dumortieri sp. nov; JAUBERT, p. 234.
? 1871 Pecten penninicus sp. nov; NEUMAYR, p. 375, pl. 24, fig. 4.
1871 Pecten pumilus Lamarck; Brauns, p. 396.
1874 Pecten pumilus Lamarck; Dumortier, p. 195, pl. 44, figs. 1-5.
1874 Pecten Agathis sp. nov; Gemmellaro, p. 107, pl. 13, figs. 3, 4.
1876 Pecten pumilus Lamarck; Tate and Blake, p. 364.

1886 Pecten (Amussium) incrustatus DefRancF; Gemmellaro, pp. 163, 352.
$1886 a$ Pecten pumilus var. ergolus var. nov; DE GregORIO, p. 670. pl. 1, fig. 10.
1891 Pecten (Amussium) paradoxus MUNSTER; Behrendsen, p. 393.
1894 Amusium paradoxum (MUNSTER), MORICKE, p. 38.

1897 Pecten personatus GOLDFUss; POMPECKJ, p. 779.
1897 Pecten cf. contrarius v. Buch; РОМРЕСКJ, p. 280.
1898 Pecten personatus Goldfuss; Greppin, p. 128.
1898 Pecten (Amusium) andium sp. nov; TORNQUIST, p. 31.

1903 Pecten (Amusium) personatus Goldeuss; BURCKHARDT, p. 22, pl. 2, fig. 7.
1907 Pecten pumilus Lamarck; Deninger, p. 453.
1910 Amusium pumilus (LAMARCK); Lissajous, p. 363, pl. 10, figs. 11, 12.

1912 Pecten (Variamussum) pumilus LAMARCK; DAL Piaz, p. 246, pl. 1, fig. 14.
1916 Variamussium pumilum (LAMARCK); PARIS and Richardson, p. 529.
1916 Pecten pumilus Lamarck; Borissiak and IVANOFF, p. 50, pl. 3, figs. 17, 18.
1920 Pecten(Chlamys) Agathis Gemmellaro; Dareste df la Chavanne, p. 51.

1926 Varianussium pumilum (LAMARCK); STAESCHE, p. 84.

1926 Chlamys amalthei (Oppel); StaEsche, p. 62.
1929 Pecten (Amussium) pumilus LAMARCK; LAN QUINE, p. 132, 188.
1936 Variamussium pumilum (LAMARCK); COX, p. 19, pl. 1, fig. 18.
1936 Variamussium pumilus (LAMARCK); DECHASEAUX, p. 65.
non 1938 Variamussium pumilum (LAMARCK); WEIR, p. 50, pl. 3, fig. 21.
1950 Variannssium pumilum (LAMARCK); CHANNON, p. 248.

1965 Amussium pumilum (LAMARCK); DAHM, p. 29.
1966 Variumussium pumilum (LAMARCK); BEHMEL and Geyer, p. 28.
non 1973 Chlamys (Acquipecten) amalthea (OpPEL); LENTINI, p. 27, pl. 15. fig. 9.
1974 Propcamussium (Parvamussium?) geelvinki sp. nov; SkWarko, p. 80, pl. 26, figs. 2, 3.
1977 Paranussium pumilus (Lamarck); DieTl, pl. 2, fig. 3.
1978 Parvamussium pumilus pumilus (LAMARCK); Holder, p. 4, pl. 5, fig. 6, text figs. 1-3.
1978 Parvamussium pumilus atlasense subsp. nov; Holder, p. 7, pl. 1, figs. 1-5, text fig. 4.
1978 Parvamussizm personatum (GOLDFUSS); HOLDER, p. 9, pl. 1, figs. 6-9, pl. 2, figs. 1-4, pl. 4, figs. $1-6$, text figs. $1,5,7$ (pars), 8 .
? 1978 Parvamussium aff. personatum (Goldfuss); HOlder, p. 20, pl. 5, figs. 1-4, text fig. 11.
? 1978 Parvamussium dumortieri sp. nov; HOlDER, p. 22, pl. 4, fig. 7.

Lectotype of Pecten pumilus Lamarck 1819, p. 183 designated by Holder, 1978, p. 4, text fig. 2a; MN unnumbered; $\mathrm{H}: 6.1$, L: 5.5; ?Toarcian, Swabia (Holder, 1978); one of five syntypes preserved in MN.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

' P . testa minima, rotundata-ovata radiis 10 ad 12 .'

2. AMENDED DIAGNOSIS

Distinguished from P. (P.) laeviradiatum by the larger modal number of internal costae, relatively insignificant dorsal extension of the auricles beyond the hinge-line and by the finer and more numerous costae on the left valve. Distinguished from P. (P.) nonarium by the lack of intercalary internal costae and by the termination of the internal costae somewhat closer to the ventral margin.

Text fig. 9: Propeamussum (P.| pumulum - frequency distribution for number of internal costae.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long at all sizes, maximum height 42 mm (Dumortier, 1874). Umbonal angle very variable (text fig. 10) increasing slightly during ontogeny. Disc flanks low.

Equilateral, equivalve, low convexity.
Intersinal distance greater in left valve than right. Small byssal notch becoming relatively smaller during ontogeny.

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Dorsal margin of right anterior auricle extended slightly beyond hinge line. Posterior auricles meeting hinge line at an obtuse-right angle, anterior auricles meeting hinge line at an acute-right angle. Anterior auricle of right valve meeting disc at a right angle, other auricles meeting disc at an acute angle.

Shell thin. Shell structure consisting of a maximum of 5 layers (HOlder, 1978) with the fourth and fifth developed only on the left valve. Innermost layer (layer 1) of comarginally orientated crystallites overlying radially orientated crystallites of layer 2, which is locally thickened to form radial costae, 9-13 in number (text fig. 9), terminating at about 5/6 total height. Layer 3 of similar stracture locally thickened to form comarginal striae. Layers 4 and 5 composed of unordered crystallites locally thickened to form a reticulate ornament with intercalary striae, closer in layer 5.

Text fig. 10: Propeamussium (P.) pumilum - length/umbonal angle.

Holider (1978) has recently located five syntypes of 'P.' pumilus Lamarce (MN) and shown them to be typical representatives (with 11 internal costae) of the species with 9-13 internal costae described in section 3. 'P.' paradoxus Muvs. TER is simply representative of the less common variants with up to 13 internal costae. 'P.'personatus Goldfuss was said to include forms with up to 14 internal costae but since the type material was destroyed in the 2nd. World War, this cannot be confirmed. Holder's (1978) opinion that Muvster's species (from the Toarcian) and Goldfuss's species (from the Aalenian) can be distinguished by the lack of a byssal notch, equality of the auricles, lack of dorsal extension of the anterior auricle of the right valve and perpendicular posterior margin of the posterior auricle in the former species is not vindicated by the original figures. Neither does there seem to be any material evidence to support Holder's claim amongst the generally incompletely preserved syntypes of ' P '. paradoxus (GPIB $61 \mathrm{Ib}, 61 \mathrm{lc}$; e. g. Pl. 1, figs. 3. 9). Holder's distinction of Toarcian from Aalenian forms on the basis of UA ($105^{\circ}-120^{\circ}$ ci. $90^{\circ}-100^{\circ}$) is invalid since Staesche (1926) cites a Toarcian specimen with UA: 96°. On his own admission slight differences in shell structure may well be due to imperfect preservation.

The author has been unable to trace the original descriptions of ' P.' intusradiatus Munster, ' P.' intusstriatus MunsTER and 'P.' contrarius v. Buch but Holder has figured one of the syntypes (HM) of the latter, showing it to be indistinguishable from Propeamussium (P.) pumilum, and included the others in synonymy with Lamarck's and Goldfuss' species. WEIR's (1938) record of 'Variamussium' pumilum is however more reminiscent of Radulopecten vagans while Morris and Lrichtis (1853) record of 'Pecten' personatus from the Bathonian has been shown by Cox and Arrell (1948) to refer probably to specimens of Camptonectes.

The syntypes of ' P '. amalthei Oppel (BSPHG) are very poorly preserved but one specimen (BSPHG AS VIII 166; Pl. 1, Fig. 8) shows 10 clear internal costae which, combined with the characteristic left valve exterior ornament, leaves litthe doubt that it should be included in P. (P.) prmilum. Stoliczha's (1861) record of Oppel's species is almost certainly a misnomer for Chlamys (Ch.) textoria while Lentini's (1973) record resembles Ch. (Ch.) pollux. 'P.' Agathis Gemmellaro was said to be close to Oppel's species and the description of asymetric right and left valve ornament confirms the similarity.
'P.' Dumortieri Jaubert was erected without diagnosis for an unfigured specimen from Var (Provence) designated as 'P.' personatus by Dumortier. It was said to resemble the latter in its internal costation and seems likely to have been one of the typically large specimens of P. (P.) pumilum frequently recorded from Var. Holder's use of demortieri for a specimen (MHNL 9075) referred to ' P.' pumilus by DUMorTIFR (1874) must now be rejected as a secondary homonym in Propeamussium. The specimen may however be worthy of a specific distinction on account of its UA (more than 125°).
'P.' penninicus Neumayr from the Oxfordian resembles P. (P.) pumilum in apparently having 11 internal costae but differs in the unusually strong reticulate ornament on the left
valve. Holder (1978), who has studied the types in Vienna, considers however that this may be due to abrasion and refers another similar specimen from the same stage to 'Parvamussium' aff. personatum.
' P '. undenarius Quenstedt and P. (' $P_{a t}$ '?) geelvinki Skivarko with 11 and 12 internal ribs respectively show no obvious differences from P. (P.) pumilum and while ' P.' Paronare De Gregorio is only known from two specimens, both less than 5 mm in height, there can be little doubt as to the affinities of the species. 'Par.' sp. Holder is only distinguished by its low UA $\left(90^{\circ}\right)$ which by the evidence of the figure seems to be the result of abrasion.
'P.' ('Amusium') andium Tornquist was based on specimens collected and referred to 'P.' pumilus by Gottsche (1878) which were said to differ from the latter species by the lack of radial ornament. It seems highly likely that they were merely the right valves of P. (P.) pumilum.

Mention of 11 internal costae in the original description of ' P.' incrustatus Defrance strongly suggests that the species is synonymous with P. (P.) pumilum.

5. STRATIGRAPHIC RANGE

P. (P.) pumilum is recorded from the U. Pliensbachian of England (BM L94170-3, SM J42033), France (Lanquine, 1929), Germany (Brauns, 1971; Oppel, 1853), Sicily (Gfu mellaro, 1874), Algeria (Dareste de la Chavavne, 1920), Chile (Moricke, 1894), and Spain (Behmel and Geyer, 1966). The latter authors also record the species as occurring rarely in the L. Pliensbachian but since there are no supporting figures, some doubt must remain. Other than in the U. Pliensbachian of E. Spain and Sicily, P. (P.) pumilum is rare before the Toarcian. The species is thereafter locatly common until the L. Bajocian but definite U. Bajocian records are completely lacking. Bathonian records are limited to Dechaseaux (1936), Deninger (1907) and Dal Piaz (1912) but only the latter produces unequivocal evidence of a Bathonian specimen in the form of a figure. Greppin's (1898) record from the 'Grande Oolithe' of Switzerland was re-assigned to the Sauzei zone (L. Bajocian) by Staesche (1926) and Morris and Lycett's
(1853) record from the Great Oolite was shown by Cox and Arkfle (19 $\ddagger 8$) to be unsupported by any material corresponding to their description (see Section 4). It is clear that P. (P.) pumilum is a rare species after the L. Bajocian and occurrences after the Bathonian are limited to two equivocal specimens from the Oxfordian of the Balkans (Neumayr, 1871) and a further one from the same stage in Swabia (HOLDER, 1978).

6. GEOGRAPHIC RANGE

P. (P.) pumilum is widespread in Europe (text fig. 11) and on a world scale spans a palaeolatidudinal range of about 40° (text fig. 12). Although very cosmopolitan the species is not known worldwide, contrary to the opinion of Staesche (1926). There are notable absences in the L. Jurassic of Australasia and western N. America despite the widespread development of appropriate sedimentary facies (see Section 8) in these regions. Yet, wherever P. (P.) ptmilum arose, migration must have occurred between Europe and S. America during the L. Jurassic to explain the observed distribution but the most obvious migration routes (via N. America/Arctic, and via the W. Pacific) are precluded because of the lack of fossil evidence en route. Hallam (1973) considered that the distribution of the aberrant pectinid Weyla, restricted to the western margins of the Americas in the L. and M. Lias but also occurring in the Ethiopian Province in the U. Lias, indicated the development of a marine connection between Argentina, Antarctica and S. America in the Toarcian. The distribution of the ammonite Bouleiceras, restricted to the Ethiopian Province and S. America in the L. Toarcian (Hille. BRANDT, 1973) supports such a view and it seems also to provide a good explanation for the distribution of P. (P.) pumilum. However, occurrences of the species in the M. Lias of both Chile (Moricke, 1894) and Europe indicate that a marine connection was established at least by the U. Pliensbachian while occurrences of Weyla in the Jamesoni zone of Spain (Dubar, 1925) indicate a seaway in the L. Pliensbachian.

Damborenea and Mancenido (1979) consider that the latter occurrences in fact indicate the existence of a direct marine connection (through central America) during the Lias.

Text fig. 11: Propeamussium (P.) pumulum - European distribution.

During the Bajocian P. (P.) pumilum extended its range along the southern margins of Tethys but was still unable to penetrate Asia or western N. America despite the undoubted development of a marine connection between the latter and Europe by this time (Hallam, 1975a). This strongly suggests an ecological exclusion and the aviculopectinid Otapiria, re-
stricted to the Pacific region (Hallam, 1977) and occurring in comparable facies, may have competitively restricted P. (P.) pumilum.

The broad distribution of P. (P.) pumilum provides some support for the view (see Section 8) that the species may have had a pseudo-planktonic mode of life.

Text fig. 12: Propeamussium (P.) pumilum - World distribution (Pliensbachian reconstruction).

7. DESCRIPTION OF ECOLOGY

P. (P.) pumilum first occurs commonly in U. Pliensbachian marls in E. Spain and Sicily where it occurs with Li ma, Oxytoma and Placunopsis together with abundant brachiopods, gastropods and cephalopods. It subsequently becomes very abundant at certain horizons in the L. Toarcian bituminous shales (Posidonienschiefer) of S. W. Germany, notably above the Oberer Stein at Göppingen where it forms a shell bed. The associated fauna is largely restricted to abundant Bositra bronni and Pseudomytiloides dubius together with ammonites and belemnites. The maximum height of 9.5 mm (GPIT) is less than in contemporaneous deposits in N. Germany (Stafsche, 1926) while specimens from Var (Provence) reach a height of 42 mm (Dumortifr, 1874).
The species is less common in the U. Toarcian but occurs in the condensed sands and ironstones of Lower Saxony (Ernst, 1923).

In the Opalinum zone (Aalenian) P. (P.) pumilum occurs fairly commonly in the Northampton Sand Ironstone, a chamosite oolite, in association with a diverse bivalve fauna including Camptonectes (C.) auritus, Eopecten abjectus, Entolium, Lima, Gervillia, Myophorella, Ceratomya and Astarte. Subsequently it occurs commonly in the Murchisonae zone of S . Germany which is developed in the same facies. Goldfuss' synonym has provided a name for one terrigenous intercalation into the sequence of Aalen (the Personatensandstein) where P. (P.) pumilum crowds the bedding planes to the virtual exclusion of other fossils. The maximum height attained is 16 mm (GPIT).
In the Aatenian of the Cotswolds P. (P.) pumilum occurs sporadically in all the oolitic horizons. In the Murchisonae
zone at Cornwell (Oxon.) it is found very abundantly in a low diversity shell bed (Sylyester-Bradley, 1968). In the L. Bajocian of the same region it locally forms shell beds in the Notgrove Freestone.
$P .(P$.) pumilum is not known to be common elsewhere and it is conspicuously rare in the deep water pelagic limestones of the peri-Mediterranean region.

It is clear from the foregoing that there is an inverse correlation between the abundance of P. (P.) pumilum and the diversity of the associated fauna. It is however found in a wide variety of sedimentary facies although P. (P.) laeviradiatum is a rare associate. Most accumulations of P. (P.) pumilum consist of disarticulated valves but the incidence of abrasion and breakage is low enough to suggest minimal transport from the life position.

8. INTERPRETATION OF ECOLOGY

P. (P.) pumilum forms part of the faunal association which characterises laminated bituminous shales (Hallam, 1976) and whose low diversity is thought to be indicative of anaerobic or near-anaerobic conditions close to the sea floor. The principle formation of this type in which $P .(P$.) pumilum occurs (the Posidonienschiefer) is dominated by the bivalves Bositra and Psendomythloudes together with ammonites and belemnites. The last two were almost certainly planktonic and thus independent of bottom conditions. Pseudomytiloides is frequently found in large numbers around driftwood to which Pentacrinus is also attached (Hauff, 1953) and it has been suggested that the inoceramid gained independence of the sea floor by adopting a byssate, pseudoplanktonic mode of life. Floating seaweed is invoked as a substrate to explain
accumulations of Pseudomytiloides in the absence of driftwood. A planktonic mode of life has also been suggested for Bositra (Jefferies and Minton, 1965) based largely on its independence of sedimentary facies and presence in areas where benthos is sparse, such as euxinic black shales and deep water pelagic limestones. Jefferies and Minton favour a genuinely planktonic, rather than pseudoplanktonic, mode of life for Bositra, owing to the lack of shell features indicative of byssal attachment. The association of P. (P.) pumilum with this supposedly planktonic fauna has led to a persistent belief among German palaeontologists (dating back to HaUfF, 1921) that this species was likewise planktonic. Hauff considered that P. (P.) pumilum was byssate and thus if epibenthic at the mercy of fluctuating bottom conditions. He therefore concluded that it must be pseudoplanktonic in the Posidonienschiefer, ignoring the fact that byssate pectinids may still unattach themselves and escape from locally unfavourable bottom conditions by swimming. Staesche (1926) also considered that the smaller size of specimens from the Posidonienschiefer was a reflection of byssal attachment to floating seaweed, with the implication that the byssus was only strong enough to support small individuals. However, Recent byssally suspended pectinids (e. g. Gloripallium pallium) commonly reach a height of 60 mm (W $\mathrm{W}_{\text {ALLer, }}$ 1972b) and it seems much more likely that small size in the Posidonienschiefer was the result of oxygen deficiency, all the bivalves being less than 30 mm in height. At present it cannot be said whether low oxygen tension directly caused stunting or simply led to high juvenile mortality.
A. Sellacher (pers. comm., 1977) reports that P. (P.) pumilum has been found associated with driftwood but the author's field observations provide no confirmation of this. More telling evidence against a pseudoplanktonic mode of life is provided by the rarity of P. (P.) pumilum in the deep water pelagic limestones in which Bositra is common. This is contrary to expectation for a pseudoplanktonic bivalve and it is the author's impression that unlike Bositra and Pseudomytiloides, P. (P.) pumilum does not occur uniformly throughout the Posidonienschiefer but is concentrated at a few levels, suggesting a dependence upon bottom conditions. Hallam (1976) has emphasised that truly anaerobic conditions may only have existed within the sediment and that just above the sediment/water interface there was occasionally enough oxygen to support a eurytopic fauna. Indeed truly epibenthic organisms (Psertodiadema and rhynchonellid and discinid brachiopods) are known from the Posidonienschiefer and Kauffman (1978) has now made the suggestion that even Bositra and Pseudomytiloides may have lived on or only slightly above the sea floor.

There is no evidence for a pseudoplanktonic mode of life in living Propeamussium. Knudsen (1967) reports both pelagic and benthonic organisms in the stomach contents of P. sibogai and considers that the pelagic fraction was probably captured during swimming activity. Most of the known species have been dredged from the sea bed in the bathyal and abyssal zones and appear to have been free living rather than byssate when adult (Knudsen, 1967, 1970). Waller (1971) reports no trace of a pedal retractor muscle scar in extant species. The only Recent pectinid known to have a pseudoplanktonic mode of life is Leptopecten latiauritus monotimeris
(see Clark, 1971). It resembles P. (P.) pumilum in its small size but differs in its strong prosogy rous inclination, a feature considered to be characteristic of a loosely suspendes mode of life (Kauffman, 1969).

It may therefore be concluded from the foregoing that P. (P.) pumilum was epibenthic and unattached for most of its life and able to live on a wide variety of substrates under variable conditions of oxygen tension and turbulence. Its particular abundance in association with low diversity faunas indicates an opportunistic adaptive strategy (Levinton, 1970). Mutual exclusion from P. (P.) laeviradiatum (see p. 31) may have been due to competition.

The large size of specimens from Var compared to those from more northerly palaeolatitudes may be the result of enhanced growth rates due to increased temperature, as has been observed in Recent bivalve species on approaching the equator (NICOI, 1967). Such an effect coupled with the pattern of ontogenetic increase in the number of radial striae could account for the relatively coarse ornament in large specimens from Morocco (Holder, 1978).

9. FUNCTIONAL MORPHOLOGY

The small adult size, thin shell, low convexity, subdued ornament, ontogenetic decrease in the relative size of the byssal notch and ontogenetic increase in the umbonal angle place P. (P.) pumilum close to a paradigm for a short byssate juvenile phase followed by a reclining/swimming phase in a low energy environment. Such a mode of life is well in accord with the palaeoecology of the species in such deposits as the Posidonienschiefer. The species appears to have been less well adapted to the higher energy environments in which it occurs (e. g. cross bedded oolites and sandstones) but was presumably able to survive frequent burial and disturbance by the swimming response.

10. ORIGINS AND EVOLUTION

If it is assumed (see p. 32) that P. (P.) laeviradiatum is the descendant of P. (P.) pumilum (rather than vice versa) then there remain no plausible ancestors for P. (P.) pumilum in the Jurassic. The U. Palaeozoic genus Pernopecten seems, by the evidence of shell structure, to be the ultimate source of Mesozoic Propeamussium (Waller, 1971).

There are no obvious phyletic trends in P. (P.) pumilum. Specimens derived from the same limestone facies (to rule out ecophenotypic variation) show a phyletic reduction in maximum height from 42 mm in the L. Toarcian (Dumortier, 1874) to 23 mm in the Aalenian (OUM J14491) to 18 mm in the L. Bajocian (YM 502) but these specimens also lie on a S-N line (from respectively S. France to S. England to N. England) so it is possible that a latitudinal temperature gradient may be the causal factor (see Section 8). However, a phyletic reduction in maximum height would be concordant with the evidence from eurytopy and opportunism which indicates the general prevalence of 'r' selection (Gould, 1977).

No convincing deterministic explanation is available for the post L. Bajocian decline of P. (P.) pumilum.

Propeamussium (Propeamussum) lueviradiatum (Wadien 1867)

Pl. 1, Figs. 5, 6, 10, 12; text figs. 13-17

Synonymy

y 1867 Pecten laeviradiatus sp. nov.; WAAGFN, p. 633. pl. 31, figs. 4a, 4b.
1883 Pecten comintus Quenstedt; Whidborne, p. 498, pl. 16, figs. 1, 2, 2 a (non Quenstedt sp).
1883 Pecten luerivudutus WaAgen; Whidborne, p. 500.
v* 1883 Pecten ferrestralis sp. nov.; W'Hidborne, p. 500.
1886 Pecten (Amusium) subpersoratus sp. nov.; VACEK, p. 111, pl. 19, figs. 5, 6.

1886d Pecten Animensis sp. nov.; Df Gregorio, p. 21, pl. 13, figs. \&, 10-12, 16 .
1893 Pecten (Amusium) subpersonatus Vacek; BOTTOMicca, p. 174.
1898 Pecten dionvillersis sp. nov.; Benecke, p. 25, pl. 1, fig. 4.
1916 Vartamussium fenestrale (Whidborne); Paris and Richarison, p. 528 .
v 1916 Variamussium laeviradiatum (WAAGEN); Paris and Richardson, p. 528, pl. 44, figs. 1a-c.
v 1926 Varamussium laeviradiatum (\mathbb{W}^{\top} AAGEN); Stafsche, p. 86, pl. 6, figs. 8, 9.
1929 Pecten (Amusium) laevoradiatus WAAGEN; Lanquine, p. 200.
? 1942 Pecten (Varumussium) coloradoensis Weaver; Leanza, p. 176, pl. 7, figs. 3, 5, pl. 10, fig. 3.
(?) 1959 Vamamussum babunokawense Kimura; Tam URA, p. 60, pl. 6, figs. 20-22.
(?) 1961 Propeamussum babunokazeensis (Kimura); Hayami, p. 255.
? 1972 Parvamussium (Parvamussium) donaiense MAN suy; Hayami, p. 197, pl. 34, figs. 11, 12, pl. 38, figs. 6, 7.
1978 Varientolum cf. Laeviradiatum (WAAGEN); Holder, p. 23, text fig. 10d, pl. 3, fig. 6.

Lectotype of Pecten laeviradiatus Wabgen 1867, p. 633, pl. 31, figs. 4a, 4h designated herein; BSPHG AS XXII 29; Pl. 1, Fig. 5 herein; Bajocian, 'Sowerbyi' zone (DiscitesLaeviuscula zones); Gingen, Württemberg Paralectotypes; the 3 other syntypes (BSPHG); also 'Sowerbyi' zone, Gingen.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Flachgewölbte Schalen, beide Klappen gleich, auf denen vom Wirbel sieben scharfe mit senkrechten Seiten abfallende Rippen ausstrahlen. In gewissen Entfernungen vom Wirbel setzen sich anfangs haarfein, dann stärker werdend, genau die Mitte zwischen den vorhergehenden haltend, neue Rippen ein, und so mehrmals, so dals man am Rande 30 und mehr Strahlenrippen zählen kann. Diese Rippen haben auf ihrem Rücken eine von Kanten begrenzte ebene Fläche, die vollkommen glatt, ohne eine Spur von Anwachsstreifen ist. Auf den ganz flachen Zwischenräumen aber bemerkt man äußerst feine concentrische Anwachsstreifen. Der Steinkern ist durchaus glatt.

Nicht selten und sehr bezeichnend für die Zone des $A m m$. Sowerbyi von Pommer (Franken), Gingen (Württemberg), Aselfingen (Baden), Betzenau und Schambelen (Canton Aargau).

Scheint im Pariser, Nordenglischen und Norddeutschen Becken zu fehlen.

2. AMENDED DIAGNOSIS

Distinguished from all other species of P. (Propeamussitum) by the horn-like dorsal extensions of the right valve auricles and by the generally coarser ornament.

Text fig. 13: Propeamusstum (P.) laeviradiatum - height of anterior auricle dorsal of hinge line/height.

Text fig. 14: Propeanuessizm (P.) Laeviradutum - number of external costae on left valve/height.

3. AMENDED DESCRIPTION

Essentially similar to P. (P.) pumilum but differing by the diagnostic horn-like auricles (Pl. 1, Fig. 12) which increase in height from about $3 \mathrm{~mm}(\mathrm{H}: 10)$ to $6 \mathrm{~mm}(\mathrm{H}: 28)$, maximum 6.5 mm (text fig. 13). Also differing in the tendency to develop a sub-orbicular disc (text fig. 15) near the maxinum height of 30 mm (BM L42019), in the slightly smaller mean L/UA (text fig. 16), in the smaller modal number of internal costae (9, range 9-10) and in the less numerous radial costae on the left valve ($13-27$ at $\mathrm{H}: 10$, increasing by intercalation to a maxinum of 37 at $\mathrm{H}: 30$ [text fig. 14]) which sometimes form a reticulate pattern with the comarginal striae (Pl .1 , Fig. 6). The shell is somewhat more robust than that of P. (P.) pumiltom but still fairly thin.

4. DISCUSSION

The earliest available name for the species described in Section 3 is 'Pecten' laeviradiatus Waagen. Although the four syntypes (BSPHG), all left valves, are seen only from the exterior there can be no doubt that they possess the internal costae of the species described above; external costation and metric proportions (1) are within the range of the latter. A lectotype (BSPHG AS XXII 29; Pl. 1, Fig. 5) is herein designated.
Whidborne (1883) thought that the smooth right valves of Propeamussium (P.) laeviradiatum belonged to a separate species and referred them to 'Pecteri' cormutus Quenstedt (1858). It was the present author's previous opinion (JOHNson, 1980) that the single known type of Quenstent's species (from the Oxfordian) is in fact a late representative of P. (P.) laeviradiatum. However, re-examination of the specimen (GPIT 4-74-10; Pl. 1, Fig. 11) has failed to confirm the existence of the internal costae previously thought to have been present and while metric proportions (2) are largely indistinguishable from P. (P.) laeviradiatum it now seems likely that the specimen is an example of Entolium. Nevertheless other specimens with internal costae and left valve ornament identical to that of P. (P.) laeviradiatum are known from the U. Jurassic. 'Variamussium' babunokawense Kimura; Tamura from the U. Jurassic of Japan seems indistinguishable from P. $(P$.) laeviradiatum but since the stratigraphic horizon (cf. Section 5) is so high and it is not yet clear whether the characteristic dorsally extended right valve auricles of P. ($P_{\text {. }}$) laeviradiatum are present it is perhaps unwise to assume that this form is conspecific. Kımura's original description has proved impossible to trace.
' P.' fenestralis Whidborne was separated from ' P.' laeviradiatus on the basis of strong comarginal ornament on the left valve and a larger number of internal costae. However WaAgen's original description in fact specifies comarginal ornament. Museum specimens show a variable development of this feature (Pl. 1, Figs. 5, 6) and it seems likely, as indeed Whidborne suggested, that this is due to differing amounts of post-mortem abrasion. Whidborne's figured specimen of ' P.' fenestralis (SM J4758) is seen only from the exterior and there is no other appropriately preserved material to evidence Whidborne's claim of up to 12 internal costae in this species. ' P.' fenestralis is also inseparable by its metric proportions (3).

Text fig. 15: 'Propeamussium (P.) laeviradiutum - height/length.
'P.' ('Amusium') subpersonatus Vacek was said to possess only 7 internal costae. However, these could only be seen through the right valve and so the number may be an underestimate. The left valve exterior ornament is identical to that in Propeamussium (P.) laeviradutum. Dorsally extended auricles are absent in the figured specimen but this is clearly due to breakage.
'P.' Animensis De Gregorto was erected for specimens which Vacek referred to ' P.' ('Amusium') subpersonatus but of which only the exterior of the left valve was visible. The ornament is however identical to that of P. (P.) laeviradiatum. Similarly, ' P.' dionvillensis Benecke can be assigned to the latter species even though only the exterior of the left valve is figured.

It has been impossible to trace the original description of 'P.' ('Variamussium') coloradoensis Weaver but Leanza's (1942) description of the latter, specifying 13-19 external costae increasing by intercalation and an umbonal angle of $105-115^{\circ}$, is indistinguishable from P. (P.) laeviradiatum. However, the figures do not reveal any sign of the horn-like auricles and this fact together with the anomalously early stratigraphic horizon (Oxynotum zone) casts doubt on the affinity of ' P.' (' V.') coloradoensis with P. (P.) laeviradiatum. The original description of 'Parvamussium' ('Pa.') donaiense Mansuy is also untraceable. Hayami's (1972) description of the species from the Toarcian of Vietnam specifies that the only difference from P. (P.) laeviradiatum is the presence of fewer (7 or 8) internal costae. In the absence of sufficient material to make an adequate assessment of variation in this character it is impossible to judge whether such forms should be accorded specific status. They may merely be geographic variants.

5. STRATIGRAPHIC RANGE

Apart from a dubious record from the Sinemurian (see Section 4), the earliest record of P. (P.) laeviradiatum is a single specimen (BM LL1579) from the U. Pliensbachian of Vieux-

Text fig. 16: Propeamussium (P.) Laeviradiatum - length/umbonal angle.
pont (Normandy). Only one museum specimen (BM unnumbered, from Beaminster, Dorset) is known from the Toarcian but Whidborne (1883) records the species from the U. Toarcian of Yeovil, Somerset where the appropriate facies (see Section 8) are well developed. Haynmi (1972) records a closely related, if not conspecific form (see Section 4), from the Toarcian of Vietnam.
P. (P.) laeviradiatum is locally common in the Aalenian and in the Bajocian until the Laeviuscula zone (L. Bajocian). There are no records from the U . Bajocian and Bathonian records are limited to 3 specimens (BM L97035-7) from Stroud, Gloucestershire whose HAAD/H (4) is inseparable from P. (P.) lacviradiatum, but whose high L/UA may imply a specific distinction. Specimens from Japan referred to by Tamura (1959) and Hayamı (1961) may constitute records from the U. Jurassic (see Section 4).

6. GEOGRAPHIC RANGE

P. (P.) lacviradiatum occurs sporadically over a large part of the European region (text fig. 17). Its distribution is almost certainly related to the localised development of appropriate sedimentary facies (see Section 8). Material from Argentina (Leanza 1942), Vietnam (Hayami 1972) and Japan (Tamura 1959, Hayami 1961) may evince an extra-European distribution (see Section 4).

7. DESCRIPTION OF ECOLOGY

In Europe P. (P.) laeviradiatum first occurs commonly in condensed sandy limestones of the Opalinum zone in Dorset, where it attains a maximum height of 30 mm (BM L42019). The associated benthic fauna is dominated by the bivalves Pseudopecten (Echinopecten) barbatus, Eopecten, Ctenos-

Text fig. 17: Propeamussium (P.) laeviraduatum - European distribution.
treon, Neocrassina and Placunopsis and the gastropod Pseudomelania together with abundant brachiopods of the form genera 'Rbynchonella', 'Terebratula' and 'Zeillerua'. P. (P.) laeviradiatum also occurs in a similar sedimentary and faunal association, albeit somewhat less commonly, in the Murchisonae and Concavum zones of S. England. It is, however, absent from the Northampton Sand Ironstone (Opalinum zone) where P. (P.) pumilum and Entolium (E.) corneolum are common.
P. (P.) laeviradiatum is recorded commonly with $P s$. (Ec.) barbatus in the Aalenian sandy limestones of Provence (LaNQuine, 1929) but is absent from the Aalenian of S. Germany where the stage is developed in sands and shales overlain by chamositic ironstones containing abundant P. (P.) pumilum and E. (E.) corneoltim. However, in the L. Bajocian of S. Germany P. (P.) laeviradiatum is found commonly in the Sowerbyi-Banke (Discites and Laeviuscula zones) where it reaches a maximum height of 22.5 mm (GPIT). The sediments are condensed marly oolites containing a diverse bivalve fauna but few ammonites. In limonitic sandy limestones of equivalent age in the Bristol district P. (P.) laeviradiatum is also common in association with an abundant and diverse fauna of ammonites, bivalves and brachiopods.

The only records from the peri-Mediterranean region are from Provence (see above) and the Aalenian of the Italian Alps (Botto-Micca, 1893; De Gregorio, 1886d; Vacek, 1886) where the sediments are condensed limestones, probably formed on a submarine rise. The associated fauna consists of abundant ammonites and brachiopods, small gastropods and more rarely the bivalves $P_{\text {s. }}$ (Ec.) barbatus, E. (E.) corneolum and Eopecten.

8. INTERPRETATION OF ECOLOGY

The coarse - grained condensed deposits in which P. (P.) laeviradiatum occurs most commonly are indicative of high energy conditions with a low sediment input. The occasional presence of locally derived conglomerates (e. g. Opalinum zone in Dorset) indicates active erosion while limonitic overgrowths suggest periods of non-deposition. The fauna associated with P. (P.) laeviradiatum exhibits a range of adaptations for achieving stability in high energy conditions. Ps. (Ec.) barbatus possesses a strongly spinose right valve which probably served to grip the sediment and prevent current scour (see p. 83). Eopecten has an exceptionally deep byssal notch which indicates that byssal fixation could have been maintained throughout ontogeny. Ctenostreon has a thick shell whose weight would have resisted overturning by currents. The terebratulid and rhynchonellid brachiopods were all attached by means of a pedicle which probably performed the same stabilising function as the byssus in Eopecten. Contrary to Rudwick's (1970) opinion, Thayer (1975) has shown that the pedicle attachment strengths of both terebratulid and rhynchonellid brachiopods compare favourably with byssate bivalves and are sufficient to anchor the animal in very high energy environments. The paucity of infauna in deposits containing P. (P.) laeviradiatum may be due to the difficulty of avoiding exhumation by current scour.
P. (P.) laeviradiatum is rarely found with the closely related eurytopic species P. (P.) pumilum nor is the morphologically similar pectinid Entolium (E.) corneolum a common associate. However, both of the latter species occur in condensed chamosite oolites whose depositional environment (high energy, low siliciclastic input) would appear to have been ideal for P. (P.) laeviradiatum. The absence of P. (P.) laeviradiatum from such facies is therefore strongly suggestive of competitive exclusion by either or both of P. (P.) pumilum and E. (E.) comeolum. This factor together with an intolerance of high rates of sedimentation probably accounts for the lack of P. (P.) laeviradiatum in S . Germany before the Bajocian. The rarity of the species in the peri-Mediterranean region is clearly due to the widespread development of low energy, pelagic limestone facies.

Most modern species of the morphologically similar genus Amusium live in the deep sea (KNUDSEN, 1967) but at least two (A. pleuronectes and A. japonicum) are known to migrate into shallow water for the purpose of spawning (B. Morton, pers. comm. 1978).

Apart from the fact that it can recess into the sea bed (B. Morton, pers. comm., 1978) little is known of the reclining position of Amusium. Further information relevant to P. (P.) laeviradiatum may be gained through a comparison with the 'window pane oyster' Placuna placenta which at least in the form of the disc resembles P. (P.) laeviradiatum. Pl. placenta reclines at a slight angle to the sea bed with the dorsal third of the shell covered by sediment (Hornell, 1909). This apparently serves to stabilise the shell against current action and a similar reclining position can perhaps be envisaged for P. (P.) laeviradiatum with the dorsally extended auricles obviating any need for burial of the disc itself.

The usual occurrence of P. (P.) laeviradiatum in moderate numbers with a high diversity fauna suggests that it was an equilibrium species (Levinton, 1970).

9. FUNCTIONAL MORPHOLOGY

The following features of the disc are paradigmatic for a bivalve reclining in a high energy environment:

1. Large size
2. Thick shell
3. Strongly ornamented right valve
4. Smooth left valve
5. Low convexity

Of these, P. (P.) laeviradiatum exhibits only feature 5 . The ornamentation of the right and left valves is exactly opposite to that of the paradigm. The fairly small adult size and thin shell is much closer to a paradigm for reclining on soft sediment in a low energy environment. Since there is abundant evidence (see Section 8) to show that P. (P.) laeviradiatum in fact occupied high energy environments it can be said that the species was poorly adapted to such situations. However, features which are inadaptive (small size, thin shell, reduced ornamentation) or of neutral significance (ontogenetic increase in UA) for reclining become adaptive for swimming. It seems probable therefore that P. (P.) laeviradiatuon was able to recover from periodic overturning by means of the swimming response.

The small initial size and subsequent negative allometric growth of the byssal noteh indicates only a brief byssate phase early in ontogeny. However, additional stability for the shell when adult may have been provided by burial of the elongate auricles just beneath the sediment surface, as suggested in Section 8. Most studied examples of slender, linear projections from the bulk of a shell (e. g. the alae of Mucrospirifer [Run. wICK, 1970]) have been interpreted in terms of a 'snowshoe' adaptation to life on a solt substrate. From the evidence already adduced from ecology this cannot be the case for P. (P.) laeviradiatum. A more effective mode of stabilisation such as the spines of Ps. (Ec.) barbatus was probably precluded by the presence of a prismatic outer shell layer in the right valve (herein presumed to exist by analogy with other asymetrically ornamented members of the Propeamussiidae). Waller (1972a) has demonstrated the difficulty of forming sharply projecting ornament based on a prismatic microstructure. This also explains the absence of plicae in P. (P.) laeviradiatum. The internal costae of the species are almost certainly a functional substitute (sce Part II)

Staesche (1926) speculated that the dorsally prolonged auricles acted like the keel of a boat and provided stability during swimming. To have been effective this would have required the animal to swim with the plane of commissure vertical. Since no extant pectinid is known to adopt this orientation Staeschf's hypothesis must be classed as doubtful.

10. ORIGINS AND EVOLUTION

Of known species the only likely ancestor for P. (P.) laeviradiatum is P. (P.) pumilum. The lower density of external costae could be the result of heterochronic retardation (caused by changes in the regulatory genome) of the rate of costal intercalation in the latter species. The extended auricles of P. (P.) laeveradiatum cannot be the result of heterochronic alteration of the ontogeny of P. (P.) pumilum since the growth of the auricles in the latter species seems to be isometric. The development of extended auricles may therefore signify structural genome evolution. The smaller number of internal costae could represent nothing more than selection for the lower end of the range (9-13) in P. (P.) pumilum.

If P. (P.) laeviradiatum did indeed evolve from P. (P.) pumilum we witness the evolution of a strongly ' K ' selected (stenotopic, equilibrium, moderate-sized) from a strongly ' r ' selected (eurytopic, opportunistic, usually small-sized) species.

There is no evidence for any phyletic trends in morphology within P. (P.) laeviradiatim apart from a reduction in maximum height from the lowermost Aalenian ($\mathrm{H}_{\text {max }}: 30$) to the L. Bajocian ($\mathrm{H}_{\text {max }}$: 22.5).

If P. (P.) lueviradiatum became extinct after the Laeviuscula zone (see Section 5) no explanation can be put forward for its demise in terms of a loss of the appropriate sedimentary facies. Apparently suitable condensed deposits occur widely in the U. Bajocian of Europe.

Propeamussium (Propeamussitm) nonarium
(Qufnstedt 1858)
Pl. 1, Figs. 13, 14, ? Figs. 15, 16; text fig. 18

Synonymy	
v? 1855	Pecten lorierianus sp. nov; Cottliau, p. 113.
1858	Pecten nonarius sp. nov; Quenstedt, p. 795, pl. 98, fig. 4.
? 1871	Pecten penninicus sp. nov; Nfumark, p. 375, pl. 21. fig. 4.
? 1874	Pecter poecilographus sp. nov; Gemmellaro and Di Blasi, p. 130, pl. 4, figs. 13-16.
py non 1883	Pecten poecilographus Gemmellaro and Di Blasi; Bоенм, p. 600, pl. 67, figs. 5, 6.
? 1893	Pecten (Amusium) Sokolowi sp. nov; Retowskt, p. 284, pl. 14, figs. 24-26.
? 1893	Pecten (Amusum) Pawlowi sp. nov; Retowski, p. 285, pl. 14, figs. 27a, 27b.
1897	Pecten Spendiarowi sp. nov; Abel, p. 352, text figs. 1a, 1b.
1905	Pecten Spendiarowi Abel; Vetters, p. 250.
pv? 1905	Pectenloneranhis Cotteau; Peron, p. 234, pl. 10, figs. 8, 9.
non 1917	Pecten Sokolowi sp. nov; Burissiak and 1Vanuff, p. 46, pl. 2, figs. 10, 10a.
- 1926	Varlamussium nonarium (QUENSTEDT); Staesche, p. 88, pl. 3, ligs. 9, 10.
? 1926	Varkamussum gumquenarium sp. nov; BERCK hempr in Stafsche, p. 89, pl. 3, figs. 5, 6.
1964	Variamussium nonarnum (Quenstedt); Welle HOFER, p. 37, pl. 2, figs. 4-7.
1974	Propeamussium (Propeamussium) nonarium (Qufnstedt); Nitzopoulos, p. 46.
? 1978	Parvamussum aff. personutum (GOLDFUSS); Holder, p. 20, pl. 5, figs. 1-4, text fig. 11.
	No trace of the type material of Pecter nonarius Quenstedt 1858, p. 795, pl. 98, fig. 4 has yet been found in the Quenstedt Collection (GPIT). The figured specimen was derived from the Malm ζ (L./M. Tithonian) of Söslingen (Swabia).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Nur den kleinen Pecten nonarius tab. 98, fig. 4 möchte ich besonders hervorheben, wie undenarius pag. 321 und Consorten zeigen die Steinkerne neun innere sehr dicke Hauptrippen. Bei großen, wie unsere Figur, stellt sich an Rande noch eine kurze Z wischenrippe ein. Im uebrigen laßt sich nicht viel wahrnehmen, man sieht nur, daß die Schale Ohren und feine Streifen hatte. Söslingen, Mähringen.*

2. AMIENDED DIAGNOS1S

Distinguished from all other Jurassic species of P. (Propeamussium) by the intercalation of additional internal costae and by the termination of the internal costae somewhat farther from the ventral margin (at approx. $5 / 6 \mathrm{H}$).

3. AMENDED DESCRIPTION

Essentiatly similar to P. (P.) pumilum; differing by the smaller size (H rarely more than 8 mm) and by the ornament. Interior of valves ornamented with between 7 and 9 original radial costae, supplemented by intercalary costae at larger
sizes but in neither case reaching the ventral margin (Pl. 1, Fig. 14). Exterior of left valve ornamented by more numerous original and intercalary costae, reaching the ventral margin and crossed by comarginal striae to form a reticulate pattern (Pl. 1, Fig. 13). Right valve exterior ornamented with comarginal striae.

4. DISCUSSION

'Pecten' lorierianus Cottrau may constitute the first name applied to the species described in Section 3. However, while the syntypes (MNS B. 03985; Pl. 1, Figs. 15, 16) apparently reveal traces of internal costae, of which some seem to be intercalary, there are only 5 or 6 original internal costae and some of the costae appear to reach the ventral margin. It seems unwise therefore to adopt ' P.' lorierianus as the senior synonym. The next available name is ' P.' nonarius Quens. tedt. Although the type material has not yet been found the original description and figure leave no doubt as to its identity.

Abel's (1897) incomplete description of ' P.' Spendiarowi mentions intercalary internal costae but also specifies external costae on the right valve, unlike P. (P.) nonarium. Vfters (1905) re-examined Abel's topotype material and showed the original description and figures to be composites built up from a number of poorly preserved specimens. Unfortunately, he did little to clarify the nature of the ornament on the right valve exterior. However, in other respects the revised description matches that of P. (P.) nonarium and it may well be that the uncertainty over the right valve exterior ornament is due to preservation of Abel's and Vetter's material as composite moulds, a common occurrence in thin shelled species.

One of the figures of 'P.' penninicus Neumarr from the Oxfordian has the characteristic reticulate exterior ornament of P. (P.) nonarium, described by Staesche (1926). Neumayr referred this to the right valve in his diagnosis and considered that the other figure, characterised solely by comarginal ornament, represented the left valve. Holder (1978) has re-examined Neumarr's types in Vienna and suggested that both may in fact be left valves which have been subjected to differing amounts of abrasion. There is thus no reason to exclude ' P.' penninicus from P. (P.) nonaritm on the basis of the external ornament. Unfortunately the types are not large enough to exhibit the diagnostic intercalary internal costae so the possibility cannot be entirely excluded that they are very late representatives of the externally similar species P. (P.) pumitum; they apparently possess 11 original internal costae as is common in the latter. Holder has figured a similar specimen from the same horizon under Parvamussium aff. personatum (Goldruss), a junior synonym of P. (P.) pumilutm.
'P.' poecilographus Gemmellaro and Di Blasi may be a large form of P. (P.) nonarium ($\mathrm{H}: 44$). The figured specimens are apparently steinkerns showing 10-12 original internal costae, with additional costae intercalated near the ventral margin. However, the disparity in size of the auricles (AH: 11, PH: 5.5 at $\mathrm{H}: 44$) probably serves to distinguish the species. The internal ornament recognisable on specimens referred to 'P.' poecilographus by Bоенм (1883) is too faint for them to be regarded as conspecific with P. (P.) nonurium.
'Variamussium' quaquenarum Berckhemer is only known from two poorly preserved steinkerns ($\mathrm{H}_{\text {max }}$: 28.6) showing 5-6 original internal costae with 2-3 intercalary costae between each pair. Their overall shape is similar to P. (P.) nonarium and they may therefore merely be large forms of this species.
'P.' ('Amusium') Pawlowi Retowskt is only known from one imperfect specimen. The figure of this reveals 22 internal costae of which about 10 seem to be of intercalary origin. It is therefore very similar to P. (P.) nonurium. ' P.' ('Amusium') Sokolowi Retowski was described as possessing 13-15 internal costal of which none were said to be intercalary. However, one of the original figures (pl. 14, fig. 26) is of a specimen with only 11 internal costae thus the species must be at least close to P. (P.) nonarium. ' P.' Sokolowi Borissiak and 1vanoff (erected for a specimen referable to Radulopecten fibrosus) is a junior primary homonym of ' P.' ('Am.') Sokolowi Retowski and must therefore be rejected.

5. STRATIGRAPHIC RANGE

P. (P.) nonarium is first recorded in the (?U) Oxfordian of S. Germany (Stalsche, 1926; Nitzopoulos, 1974; ?Holder, 1978) and ?S. Poland (Neumayr, 1871). Staesche also records the species in the Kimuneridgian of S. Germany and there are questionable records from the E. Paris Basin (see Section 7). Tithonian records are widespread and refer to numerous specimens although there are no certain records from the U. Tithonian. 'Parvamussium' hinagense Tamura (1973) described from Japan and Indonesia may represent the persistence of P. (P.) nonaritm into the L . Cretaceous.

6. GEOGRAPHIC RANGE

P ($(P$.) nonarium is unknownoutside the European region, except possibly in the L. Cretaccous (see Section 5). Within Europe (text. fig. 18) all records are limited to a narrow zone corresponding to a palaeolatitude of about $25^{\circ} \mathrm{N}$. Occurrences outside this zone are of questionable identity (see Section 4).

7. DESCRIPTION OF ECOLOGY

Undoubted records of P. (P.) nonarium are limited to micritic or marly limestones containing a benthic fauna which is usually low in diversity and density. The only exceptions to this rule are specimens from reef-derived faunas in the Tithonian of Sicily which have been referred to 'Pecten' poecilographus Gemmfilaro and Di Blasi. This can be construed as further evidence for the view that the latter is not conspecific with P. (P.) nonarium (see Section 4).

In marly limestones of the L. Tithonian klippes north of Vienna P. (P.) nonarism occurs commonly in an otherwise sparse fauna dominated by ammonites but also containing a few terebratulid brachiopods and bivalves of the genera Astarte, 'Aucella', Corbis, Nucula, 'Ostrea' and Trigomia (Abel, 1897; Vftters, 1905). Micritic limestones of the same age in S. Germany (Hangende Bankkalke) contain common P. (P.) nonarium associated with a similar low diversity benthos. In the M. Tithonian of the same area, the Neuburger

Text fig. 18: Propeamussium (P.) nonarium - European distribution.

Bankkalke, a micritic limestone, contains common P. (P.) nonarusm in association with ammonites and small specimens of Entolum (Wellnhofer, 1964).

Abundant but poorly preserved specimens exhibiting fine radial striae from the Calcaire a Astartes (L. Kimmeridgian) of the E. Paris Basin (MNR) are probably mainly referable to Radulopecten strictus (q. v.) but may also include a few examples of P. (P.) nonarumm. Specimens with the diagnostic intercalary internal costae have, however, yet to be discovered.

8. INTERPRFTATION OF ECOLOGY

The fine-grained sediments to which P. (P.) nonarium is limited are indicative of very low environmental energy. The sparseness of benthic fauna in such sediments suggests that they formed an unfavourable soupy substrate. Entolium, the only common epibenthic element apart from P. (P.) nonatium, probably escaped sinking into the substrate by virtue of the snowshoe effect provided by the smail, thin, discoidal shell and by its probably considerable ability to swim. Non-vagile byssate and cemented bivalves were probably also restricted by the paucity of firm attachment sites. It is worth noting that the specimens of 'Ostrea' are always found cemented to ammonites (VFTTYRS, 1905).
P. (P.) nonarium may have been limited to low energy environments on account of its thin and probably weak shell. However, the very restricted geographic distribution of the species cannot be explained simply on this basis. Apparently suitable fine-grained substrates in, for instance, the U. Jurassic of S. Furope, went uncolonised. Bearing in mind the very narrow latitudinal range of P (P.) nonarium it is possible that the species had a very precise temperature dependence.

9. FUNCTIONAL MORPHOLOGY

Small size, low convexity, discoidal form and thin shell place P. (P.) nonurium close to a paradigm for reclining on
sott substrates in a low energy environment. The small byssal notch indicates only a brief byssate phase in the juvenile. The absence of information on the ontogeny of umbonal angle precludes any assessment of swimming ability although the above features are certainly not inadaptive for swimming. Internal costation probably provided strength and stiffness for the thin shell in defence against predatory attacks. Intercalation of new costae would have maintained this function against the detrimental effects of increased size and so represents a superior adaptation in comparison to the simple pattern of costae exhibited by other Jurassic species of Proреатиssium.

10. ORIGINS AND EVOLUTION

By its general morphological similarity the most likely ancestor for P. (P.) nonurium is P. (P.) pumilum. However, there is an unexplained stratigraphic gap in the Callovian between respectively, the first and last appearances of these. species.
At comparable sizes P. (P.) nonarium appears to have relatively fewer costae on the exterior of the left valve than P. (P.) pumituon. Since the costae are continuously intercalated during the ontogeny of both species, trans-specific evolution may have involved the heterochronic retardation of the rate of intercalation with respect to size. In contrast, the presence of internal intercalary costae in P. (P.) nonarium represents the evolution of a new feature and implies some more profound revolution in the genome. It represents, moreover, an improvement in mechanical design (see Section 9) and this, together with a narrowing in the range of substrate tolerance and retardation of 'shape' development, is strong evidence for the prevalence of ' K ' selection (Gould, 1977).

From the limited available data it is impossible to detect any phyletic trends within P. (P.) nonarium

Family PECTINIDAE Rafinespue 1815
Genus entoliuni Mefk 1865
Type species. OD; Mfæk 1865 p. 478 ; Pecten dermissus Phillips, "as illustrated by Quenstedt, 1858, p. 353, pl. 48 , fig. 7", i. e. Entolium demissitm Meek 1865 (see Duff, 1978); Aalenian, Germany.

AMENDED DIAGNOSIS

Byssal notch usually absent at all stages of development; margins closed laterally; incised ligamental area usually present and extending parallel to hinge line on each side of inner ligament pit; auricular crura present; outer shell layer partly 'fibrous', 'fibres' radial or divaricate. M. Tr.-U. Cret., cosmop.

D1SCUSSION

Hertlein (1969: N3+6) considered a byssal notch to be lacking in Entolitin. There is, however, a small but quite clearly developed notch in juveniles of Entolium (E.) lunare (see p. 38). By his statement 'inner shell layer calcite, foliate; outer layer radially fibrous' Hertlein implies in his diagnosis the existence of only 2 shell layers in Entolutm. However, in almost all known scallops, including the morphologically very similar Amusiums (Taycor et al., 1969), there is a third non-myostracal shell layer, composed of aragonite. In all but the aberrant Propeamussiidae (see p. 22) this forms the middle shell layer and a similar layer can de inferred in Entolium (see p. 36). The inner and outer shell layers of Recent pectinids (sensu stricto) appear to be invariably composed of foliated calcite (TAylor et al., 1969). However, Hertleln's contention that Mesozoic Entolium has a fibrous outer layer is given support by the author's study of valve surfaces at low magnification (text fig. 27) although it would appear from specimens in various states of abrasion that only one sub-layer within the outer shell layer is composed of fibres. Indeed it is conceivable that the fibrous appearance could be due to the assumption of a vertical orientation hy foliae. SEM study of fractured surfaces has not proved definitive on this point but henceforth in this work shell structures such as that depicted in text fig. 27 are termed fibrous in order to distinguish them from the more usual foliated structure consisting of sub-horizontal foliae. The mineralogy of the outer shell layer in Entolium is unclear from Hertlein's statement but the preservation state of specimens examined by the author suggests very strongly that it is calcitic, as is usual in the pectinids (see above).

Hfrtlefn's statement that the fibres are radial must be amended on the basis of results presented herein so as to include divaricate arrangements. Such arrangenents are also found in L. Jurassic Camptonectes (C.) subulutus (q. v.) thus forms of the latter with shallow byssal notches closely resemble contemporaneous Entolutm (see P. 38). They may, however, be distinguished in well preserved specimens by the presence of divaricate striae on the shell surface (as against divaricate fibres within the shell of Entolitim), by the absence of dorsally extended auricles on the right valve, by the perpendicular junction of the anterior auricle with the hinge line on the left valve and by the marked auricular asymmetry in both valves.

Subgenus ENTOLIUM s.s.
(Synonyms etc. Protamusium Verrill 1897
Protamussium Paris and Richardson 1916 [nom. null.]
Protomusium Stewart 1930 [nom. null.]
Entholium Tzankov and Boncev 1932
[nom. null.]
Etolium McLearn $19+9$ [nom. null.])

AMENDED DIAGNOSIS

Auricles of right valve projecting above hinge, commonly as angular wings; left valve smooth, right valve smooth or with comarginal grooves. M. Trias. - U. Cret., cosmop.

DISCUSSION

Hertiein (1969: N347) considered the valve bearing dorsally extended auricles in E. (Entolium) to be the left. However, the fact that in E. (E.) lunare (see p. 38) a byssal notch is found in the valve bearing dorsally extended auricles indicates, by analogy with all other known pectinids, that this valve is the right. Hertiein thought that the outer surface of the valves was always smooth in E. (Entolium). The right valve of E. (E.) orbiculare (see p. 57) exhibits, however, quite strong comarginal grooves.

Staesche (1926) attempted to subdivide the bulk ol Jurassic E. (Entolium) by the criterion of the presence or absence of internal ridges extending from the umbonal region in a direction sub-parallel to the dorsal margins. Forms with such ridges were said to posses umbonal angles of about 95° and were referred to the 'Gruppe des Entolium cingulatum' while forms without internal ridges were said to possess larger umbonal angles and were referred to the 'Gruppe des Entolitm demisstm'. Many subsequent authors have adopted $S_{\text {TAESCHE's criteria yet they almost certainly represent a spuri- }}$ ous basis for the subdivision of the majority of Jurassic E. (Entolium). Staesche himself figured (pl. +, fig. 5) a specimen of the exemplary species of his second group which shows, through the translucent shell, the internal ridges diagnostic of his first group. Moreover, the sole known type of this species (YM 202) has an umbonal angle of barely 80°. In fact umbonal angle increases through the ontogeny of virtually all Jurassic E. (Entolium) from a value below 95° to a value well above it, thus a single value cannot be diagnostic of any subdivision of the group. Furthermore internal ridges may be found in large specimens with correspondingly large umbonal angles as well as in small specimens with umbonal angles of about 95°. The author considers that in most cases the development of internal ridges, far from being under genetic control, is a result of diagenetic processes.

As Staesche pointed out, the internal ridges correspond in position to the margins of the relatively thick inner shell layer (composed of foliated calcite). In all known true pectinids (see above) this layer is surrounded in the internal surface by the outcrop of the middle shell layer and pallal myostracum, both of which are thin and composed of relatively soluble aragonite. In very many of those specimens of E. (Entolium) exhibiting internal ridges the upstanding feature appears to be
nothing more than the edge of the imner shell layer, exaggerated by the loss of the immediately adjacent shell material. This is most plausibly explained as the result of the preferential dissolution of aragonite during diagenesis. Such a process could also account for the fact that in some specimens the external surface of the shell displays ridges above the edges of the inner shell layer (Pl. 1, Fig. 17). Although dissolution of aragonite would result in thinning of the shell in all but the most marginal regions (whose thickness is entirely due to the outer shell layer which is almost certainly composed of calcite, see p. 35) the proportionate effect on thickness would be greatest in the region immedjately marginal to the inner shell layer where the middle shell hayer and pallial myostracum constitute a relatively large part of the total thickness. Thus, in shells affected by diagenetic loss of aragonite, one might expect this region to be the locus of most compressive deformation due to sediment compaction with the resultant development of a ridge above the edges of the inner shell layer in a manner analogous to the genesis of a fault scarp.
In the case of certain specimens (BSPHG 1957 Vt 1291-t293, 182t-t855) referred by Wellnhofer (196t) to Entolum cingulutum (Gonnuss) it does appear that internal ridges were present when the animal was alive. The grooves seen on internal moulds (ci. Pl. t, Fig. 21) seem too sharply defined to have resulted from any diagenetic process of the sort outlined above. The author prefers at present to reserve judgement on the status of these specimens pending examination of further material (see also p. 52).
For the remainder of Jurassic E. (Entolitm), to which Staesche's scheme seems inapplicable, the only criteria by which a reasonable subdivision can be made are the presence or absence of a byssal notch and the presence or absence of strong comarginal grooves on the right valve. The first distinguishes between E. (E.) lutater and E. (E.) corneolum and the second between E. (E.) orbiculure and thoth the latter species. E. (E.) orbiculare and E. (E.) comeolum undoubtedley overlap in their stratigraphic ranges (see pp. 58, 52) and there is a strong suggestion that the latter species overlaps with E. (E.) Itmare (see pp. 43,52). There is thus no evidence that the species form part of a phyletic continuum. KflLy (1977) states that E. (E.) orboculare may sometimes lack comarginal grooves on the right valve but that samples of E. (Entolium) can be assigned unequivocally to E. (E.) orbiculare if a few comarginally grooved right valves are present. This argument ignores the quite reasonable possibility that E. (E.) orbiculare may occur sympatrically with other E. (Entolium) species. Thus in the absence of any other diagnostic features in E. (E.) orbiculare the author can see no justification for not placing smooth right valves occurring together with comarginally grooved right valves in E. (E.) corneolum if (like all undoubted examples of E. (E.) orbiculare examined by the author) they lack a byssal notch or in E. (E.) lunare if (as Kelly states withour pictorial evidence, may sometimes be the case in E. (E.) orbiculate) they possess a byssal notch. There is a pressing need for detailed study of undoubted (comarginally grooved) right valves of E (E.) orbiculare in order to isolate lurther diagnostic features which could be used to crosscheck Kelly's statements concerning the range of variation in the right valve.

At present there appears to be no completely sound basis for distinguishing the left valven of any of the three species
discussed above. However, slight differences in mean metric proportions (see pp. 38, 47,57) and the relatively limited overlap of the known stratigraphic ranges of the species (see pp. 43, 52, 58) do allow a reasonably confident identification of some specimens.

A further species which may be referable to E. (Entolitim), characterised by a slight byssal notch and very high $\mathrm{HAA}_{\mathrm{R}} / \mathrm{L}$ (see p. 43), appears to be quite common in the Tithonian of S. Europe. However like a number of other distinctive species from the latter stage and region (see p. f1) it is excluded from this work because of the paucity of museum specimens and bibliographic references and because its origins probably lie outside the pectinid fauna of the European Jurassic.

There is some evidence from the literature (see p. 58) for yet another E. (Entolium) species, characterised by strong comarginal ornament on both valves, in the M. Jurassic of Europe. However, the author has failed to discover any specimens which confirm the existence of this species.

The somewhat reduced mean H/UA of specimens with smooth, unnotched right valves from M. Tithonian sands near Oxford is not considered herein to merit a specific separation from E. (E.) comeolum since other metric proportions are inseparable from the latter species and a number of more parsimonious explanations, of which reduced growth rate is the most plausible (see p. 55), are available.

Entolium (Entolium) Lunare (Roener 1839)

Pl. 1, Figs. 17, 18, ? Fig. 23; text figs. 19-29.

Synonymy

? 1829	Pecten sp.; Phllilps, pl. 5, fig.
? 1833	Pectern glaber sp. nov; Hehl in v. Zietin, p. 69. pl. 53. fig. I (non Montagu sp.).
1836	Pecten comens J. Somerby, goldflis, p. 73, pl. 95, fig. 11 (non J. Sowerby sp.).
1839	Pecten linutis sp. nov; Roembr, p. 26.
$18+3$	Pecten lastress sp. nov; Nist, p. 299.
1850	Pecten Hehlii sp. now; d' ${ }^{\text {Prbigny; }}$,
v 1850	Pecten discaformis Schublek; D"Orbiciny, v. 1, p. 237 (non Schobler sp.)
v: 1850	Pecten Phileror sp. nov; d'Orbigivy, v. 1, p. 238.
$\cdots 1850$	Pecten Palacmon sp. nov; D'Orbigny, \because. 1 , p. 238, (Buuif, 1908, v. 3, p. 37, pl. 18, fig. 5, non tig. 6).
v? 1850	Pecten Proeteus sp. nov; d'Orbigny, v. 1, p. 257.
(?) 185?	Pecten glaber Hehl: Quenstedt, p. 506 (non Montagu sp.).
1853	Pectenglaberd var. nov; Oppe1, p. 77 (non Montagu sp.).
? 1858	Pecten amatus sp. nov; Andifer, p. 644.
(?) 1858	Pecterg glaber HeHL: Qlenstedt, p. 79 (non Montagu sp.).
$? 1858$	Pecten sepultus sp. nov; QuFnstelet, p. 48, pl. 4 , figs. 10. 11.
1858	Pecten Hehli d'Orbig.vy; Oppfre p. 103.
(?) 1858	Pecten Philenor D'Orbigni; Opplit, p. 181.
(?) 1861	Pecten sepultus Quenstedt; Trautschold. p. 446.
1863	Pecten lasmus Nyst; Schionbach, p. 545.
$186 t$	Pecter Hehli d'Orbigni; Dumortir r, f. 162, pl. 24, fig. 16.
$? 1866$	Pectendemissus Phiilips; Lindstrom, p. 14, pl. 3. figs. 9, 10 (non Phillifs sp.).

1868 Pecten liasimus Nist; Jaubert, p. 234.
? 1869 Pecten frontalis sp. nov; Dumortifr, p. 229. pl. 37, figs. 1, 2, pl. 38, fig. 1.
1869 Pecten Palaemon D'Orbignj; Dumiortiler, p. 304.

1869 Pecten liasinus Nist; Dumiortifr, p. 306.
1871 Pecten lumaris Roemer; Bratins, p. 398.
1872 Pecterliasmus Nist; Tietze, p. 106.
? 1875 Pecten demussarmes sp. nov; Cross, p. 123
1876 Pecten lumuluris Roemer; Tate and Blakl, p. 361.
v 1878 Camptonectes liasicus (NySt); Bayle, pl. 121, fig. 2.
? 1853 Pecten demissus Phillips; Lundgrin, p. 16, pl. 2, fig. 12 (non Phillifs sp.).
1884 Pecten lunularss Roemer; Simpson, p. 172.
1886 Pecten Hehlu d'Orbigni; Di Stefano, p. 135, pl. 4, figs. 28-30.
? 1886 Pecten Dl-Blasii sp. nov; Di Sterano, p. 157. pl. 4, figs. $28,29$.
? 1888 Pecten lundgren sp. nov; MOBERG, p. 35, pl. 1, figs. 27-32.
1891 Pecten Heblı D'Orbigny; Behrendsrn, p. 392.
? 1891 Pecten De Blasti Di Stefano; Di Stefano, p. 61.
1892 Pecten (Pseudamusumm) Hehlii D'Orbigny; Parona, p. 15.
(?) 1892 Pecten (Pseudamusinmz) frontalis DUNORTIER; Pakona, p. 16.
1894 Pecten Hehli d'Orbigny; MOricke, p. 37.
? 1895 Pecten Stewartianus sp. now; Lunderen, p. 198. pl. 3, fig. 12.
? 1895 Pecten callosus sp. nov; LUNDGREN, p. 200, pl. 3, fig. 15.
1897 Pecten husinus Nist; POMPECKJ, pp. 773, 790, 820.
1903 Pecten (Entolum) Hehli d'Orbignl; Bittram, p. 38.
? 1904 Chlamys (Psetudamussumb) Chatron sp. nox; COSSMANN, p. 504, pl. 16, figs. 11, 12.
1909 Pecterz (Entolism) Hebli D'Orbigny; Trauth, p. 88.

1909 Pecten (Entolium) liasimus Nyst; Trauth, p. 89.
1912 Pecten Hehli d'Orbigny; Toni, p. 33.
1915 Pecterr (Entolitm) Fraponti sp. nov; Rollier, P. 467, pl. 30, fig. 7.
non 1916 Chlamys (Pseudamussium) palaemon (D'ORBIGNy); Cossmann. p. 46, pl. 5, figs. 18-20.
1916 Entolium disciforme (SCHOBLER); COSSMANN, P. 45 , pl. 8, figs. 10,11 (non Schubler sp.).
? 1916 Pectenglaphyrus sp. nov; R. PhilippI in Jaworski. p. 437.
? 1917 Pecten vitreus Roemer; Burlssak and IVANOfF. p. 8, pl. 1, fig. 4, (non figs. 1, 2, 12, 16).

1925 Pecten (Entolimm) Hehli D'ORbjgNy; Dubar, pp. 260, 266.
1925 Pecterthasinus Nyst; Dubar, p. 266.
(?) 1925 Pecten frontulis DUMORTIER; DUBAR, p. 266.
(?) 1925 Pecten (Psendamussitm) Palaemon D'OrbiGNy; Dubar, p. 266.
v 1926 Chlamys calva (Golipuss); Staesche, p. 58, pl. 2, figs. 11, 12, (non Goldfuss sp.).
v 1926 Entolium Hehlii (D'Orbigni); STaeschl, p. 59, pl. 2, figs. 13-15.
v 1926 Chlamys Philenor (I'Orbigny); Stafsche, p. 62, pl. I, figs. $16,17$.
v? 1926 Entolium Proetens (D'Orbigny); Staesche, p. 92, pl. 6, figs. 3, 4.
v 1926 Entolimy lunare (ROEMER); Staesche, p. 96, pl. 4, figs. 1, 2.
v 1926 Entolium liasinum (NyST); STAESCHE, p. 97, pl. 6. fig. 5.
(?) 1926
(?) 1929
1929 Pccten (Entolium) Hehli ${ }^{\circ}$ 'Orbigny; Lanquinf, p. 132.

1932 Pecten (Entholum) hastnum NYST; ŤANKON and Buncev, p. 230.
(?) 1934 Entoliun frontale (DUMORTIFR): R(OFF.NKRANTZ. P. 113.
v 1936 Entohum Hchlu (L'OrbigNi); Dechastal x, p. 60, pl. 8, figs. 10, 11.
(?) 1936 Entolium frontalis (DUMORTIER); DFCHASEAUX, P. 62 .

1936 Entolium Fraponti (Rellife); Dechasfaux, P. 62.
v? 1936 Chlamys philenor (D'Orbigny): Kuhn, p. 247, pl. 12, fig. 29.
(?) 1942 Pseudentolium frontale (DUMORTIER); ROSENKRANTZ, p. 25.
1942 Pecten(Entolutn) of. Hehli D'Orbigny'; Leanza, p. 175, pl. 9, fig. 4.

1951 Entolitm bebli D'Orbigny; Troensson, p. 216.
1951 Entolutm calvum (Goldfuss); Troedsson, p. 217, pl. 20, figs. 9-13 (non GoldFuss sp.).

1951 Entolum lindgreni (MObfrg); Trofusson, p. 218, pl. 20, figs. + 8.

1961 Ento'ium cf. Inrare (ROFMFR); Hayani, p. 255
1963 Entolutm lunare (ROEMER); HAL LAM, p. 561.
(?) 1965 Pecten frontalis Dumortier; Dahm, pp. 27, 28.
1966 Entolum proters (D'OrbigNY): Behmel and GEYFR, p. 28.
1966 Entolum lunare (ROFMFR); URIICHS, p. 31.
1966 Entolum Lasthtim (NiST); C. PAl Mr-R, p. 67
1966b Entolum liasinum (NYST); C. PAIMFR, p. 72.
1967 Entolum liasinum (Nyst); Berridge and IVImFy Соик, p. 160.
1971 Entolusm liastmum (NYST); HALIAM, pp. 244, 245
? 1971 Entolusm procteus (D'ORBIGNI'); WENDT, p. 156.
1973 Entolism (Entolium) Hehli (D'Orbigny'); Li NTINI, p. 23, pl. 14, fig. 7.
? 1978 Entolium sp. A; DUFF, p. 64, pl. 5, figs. 7-10, $12,13,17$.
The type material (possibly only one specimen) of Pecten lunaris RofmFk 1839, p. 26 is probably in the Rofmer-Pfilzafus-Museum, Hildesheim, W. Germany. Roemer cites the following dimensions: 'Diameter': 3.5 inches (88 mm), UA: 150. The material was collected near Ocker (N . Germany), according to Brauns (1871) from sediments of the Planorbis zone.

1. ORIGINAL DIAGNOSIS AND DFSCRIPTION

'P. (Pletironectes) testa plana orbiculari concentrice substriata, angulo marginum cardinalium obtusissimo.

Es gehört diese Form zu den Pleuronectiden. Die Schalen sind sehr flach gewölbt, zirkelrund, nur undeutlich concentrisch gestreift und ziemlich dick. Die Schloßkantenwinkel beträgt etwa 150 Grad .

Findet sich im unteren Lias des Adenberges bei Ocker und hat einen Durchmesser von $31 / 2$ Zoll."

2. AMENDED DIAGNOSIS

Distinguished from E. (E.) corneolum by the presence of a small byssal notch in the juvenile and from E. (E.) orbiculare by the smooth right valve.

Text fig. 19: Entolum (E.) Iznare - height/length.

Text fig. 20: Entolum (E.) limare - separation of auricular apices/length.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long early in ontogeny, becoming longer than high (text fig. 19). Maximum height probably 116 mm (BM 46444) but possibly as much as 145 mm (see Section 4). Umbonal angle relatively invariant at any one size but increasing at a decreasing rate during ontogeny (text fig. 21) to give concave dorsal margins.

Equilateral, approximately equivalve, low convexity.
Intersinal distance slightly greater in left valve than right, increasing at a decreasing rate in both (text figs. 22, 23). Small juvenile byssal notch becoming almost non-existent later in ontogeny (Pl. 1, Fig. 18).

Disc flanks low but auricles well demarcated from disc. On left valve both auricles meeting hinge at an obtuse angle and

Text fig. 21: Entolium (E.) lunare - height/umbonal angle.

Text fig. 22: Entolitm (E.) lunare - intersinal distance on left valve/length.
disc at an acute angle. On right valve both auricles extended dorsally beyond hinge line, posterior meeting disc at an acute angle, anterior meeting disc at an approximate right angle. Height of right valve anterior auricle (text fig. 24) and separation of auricular apices (text fig. 20) variable and increasing at a decreasing rate in both. Anterior hinge length slightly greater than posterior, increasing at a decreasing rate in both (text figs. 25, 26).
Valve exteriors ornamented only with very line comarginal atriae. Shell thin with at least one sub-layer in the outer shell layer composed of divaricate fibres (text fig. 27; see p. 35).

4. DISCUSSION

Possibly the earliest bibliographic record of the species described in Section 3 is as 'Pecten' sp. Phulura (1). The stratigraphic horizon of the figured specimen is unusually late (Ox fordian) but the presence of a byssal notch aligns it with the upecies described above (however, see below). The original is now lost, as is that of ' P.' glaber Hehl whose ligure also resembles that of the species described in Section 3. In erecting 'P.'Hchlıi for Hehl's figured specimen, w' $\mathrm{O}_{\mathrm{Rbig}} \mathrm{Ny}$ (1850) considered that ' P.' glaber was a junior primary homonym of a species described by Movtacu in 1803. His hy podigm is far from clear but subsequent authors (see Synonymy) have applied the name to the species described in Section 3. The present author has been unable to trace Montanu's description but even assuming that w'Orbigvy was justified in rejecting Hemi's species, the creation of a new species was an unnecessary step since both ' P.' lunaris Romafr and ' P.' liasinus Nist appear to represent the species described in Section 3, and have historical precedence. ' P.' liasinus was created in

1843 for Golufuss' (1836) specimen from the L. Jurassic referred to 'P.'comens J. Somrrby, a Tertiary species. 'P.' Iunaris was erected in 1839 for a specimen which, according to Brauns (1871), was derived from the Planerbis zone. The specimen has not been examined by the present author. However, Rofner specifies an umbonal angle of 150° which is a reasonable value for the species described in Section 3 at the size stated ('diameter': 87 mm) and well above that attained in any other Jurassic E. (Entolutm) species. Together with the stratigraphic information this can leave little doubt that 'P.' I lunaris should be accorded the status of senior synonym.
One of the syntypes of 'P.' Palaemon d'Orbigny (MNS 1840) closely resembles E. (E.) lunare in its ornament and metric proportions (2). However, the other syntype is closer to Chlamys (Ch.) textoria in its possession of radial striae and since such ornament was specified in d'Orbiciv's description, the latter specimen should perhaps be selected as lectotype. This interpretation appears to have been followed by Cobsmann (1916) and Dumortier (1869).
'P.' Philenor b'Orbigny was created for L. Pliensbachian specimens which fell within Goldrush' (1836) hypodigm for 'P.' cingulatus, an E. (Entolium) pecies. In so far as there are apparently no European L. Pliensbachian E. (Entolium) species apart from E. (E.) Iumare, D'Orbigny's hypodigm must be included in the latter species concept. However the single observed type (MNO 1843) is probably a representative of Ch . (Ch.) textoria so the status of secondary references to d'Orbigny's species for which no original remains (e. g. Oppel, 1858) is in some doubt. The figured originals of Sraesche's (1926) 'Ch.' Pholenor (GPIT) are almost certainly representative of E. (E.) lunare but that of Korn's (1936) 'Ch.' philenor (BSPHG) is more reminiscent of Camptonectes (C.) subulutus.

Text fig. 23: Entolum (E.) lunare - intersinal distance on right valve/length.

Text fig. 24: Entolium (E.) lunave - height of anterior auricle on right valve/length.

In the same way as for 'P.' Pbilenor, d'Orbigny created 'P.' Proeteus for Toarcian specimens which fell within Goid fuss' hypodigm for ' P.' cingulatus. Since two E. (Entolium) species (E. (E.) lunare and E. (E.) corneolum) appear to coexist in the Toarcian it is impossible to be certain of D'Or BIGNY's hypodigm in the absence of a diagnosis. The only syntype which the author has been able to discover (MNO 2079) is too poorly preserved for specific determination although H / L and PH / L (3) plot within the range of E. (E.) lunare. Staesche's (1926) figured originals to E. Proeteus (GPIT) are similarly indeterminate and thus specimens referred to this
species by the latter author in Behyel and Gfyer (1966) are also of uncertain affinities. WENDT'S (1971) record from the Aalenian and Bajocian of Sicily almost certainly refers to E. (E.) corneolum.

A specimen (MNS) from the L. Pliensbachian referred by d'Orbigny to Schubler's (1833) Bajocian species 'P.' disciformis ($=E$. (E.) comeolum q. v.) in fact possesses the small auricles typical of E. (E.) ltmare. Similarly, a specimen from the same horizon referred to Schubler's species by Cossmann (1916) has the small byssal notch of E. (E.) lunare. Bearing in mind the known stratigraphic range of E. $(E$.) comeolum it

Text fig. 25: Entolium (E.) lunare - anterior hinge length/length.

seems highly likely that unillustrated reports of pre-Toarcian occurrences of Schubler's species (Coquand, 1860; Terquem and Piette, 1865; Pompeckj, 1897; Joly, 1907 ; Dubar, 1925; Lanquine, 1929: Dflhaseaux, 1936) tugether with Leanza's (19+2) and Lentina's (1973) poorly illustrated examples are in fact referable to E. (E.) lunare. Gol dfuss' (1836) record of L. Jurassic examples of Phullips' species ' P.' demissus is likewise almost certainly a misnomer for E. (E.) lunare; his figured specimen (BSPHG) is from the M. Jurassic. However, specimens figured under ' P.' demissus from an unspecified horizon in Spitzbergen (Lindstron, 1866; Lundgren, 1883) exhibit the byssal notch typical of E. (E.) lunare and thus, bearing in mind the very limited development of the L. Jurassic in Spitzbergen, may constituic M. or even U. Jurassic representatives of the latter species. 'P.' Stewartianus Lundgrfn from an unspecified horizon in E. Greenland has a slight byssal notch and H/UA ($50 / 140$) within the range of E. E.) lunare projected to larger sizes. It may be an U . Jurassic representative of the latter since it was compared with a species described from the Kimmeridgian, 'P.' zalhdus Linntrom (= Camptonectes (C.) auritus).

Burissiar and lvanoef's (1917, pl. 1, fig. 4) figure of ' P. vitreus (non Rofmer) depicts a specimen with a byssal notch that is undoubtedly from the L. Volgian $(=$ L. Tithonian) of Russia. However, it should be borne in mind for this and the above records from Spitzbergen and Greentand that E. (E.) orbicture (q. v.) is present in the U. Jurassic of each area and since Kflcy (1977) states that the right valve of the latter species may be smooth and possess a byssal notch there remains the possibility that E. (E.) orbiculare may be the only species present (however see p. 36). There is a rather more remote possibility that the above records may refer to a poorly known, essentially S. European species (see below).
'P.' callosus Lundgren, from E. Greenland, has metric proportions (4) within the range of E. (E.) lunare.

The figures of 'P.' Itindgreni Moberg from S. W. Sweden appear to show divaricate striae and are thus indicative of Camptonectes. However, Trultoson (1951), who may have examined the types, has referred to Moberg's species specimens whose small byssal notch, H/L, H/UA, $\mathrm{I}_{\mathrm{R}} / \mathrm{L}$ and $\mathrm{HAA}_{\mathrm{R}} / \mathrm{L}(5)$ is within the range of E. (E.) lunare. Metric proportions of Mobrra's figure (6) are also indistinguishable so the appearance of divaricate striae may be a misrepresentation of the divaricate fibres within the shell of E. (E.) lunare.
$\mathrm{AH} / \mathrm{L}(46 / 130)$ and $\mathrm{l}_{\mathrm{R}} / \mathrm{L}(60.5 / 130)$ of the figure (1869 , pl. 37, fig. 1) of 'P.' frontalis Dumortifr from the U. Pliensbachian are considerably higher than those of measured specimens of E. (E.) lanare. However, this may well be due to inaccurate representation of the original for which Dumor. TIFR cites a height of 145 mm and length of 155 mm . Subsequent references to Dumorthr's species in Parona (1892), Roman (1926), Rosentrantz ($1934,19+2$) and Dechaseaux (1936) are unaccompanied by figures so must remain doubtful. 'P.' (Entolium) Fratiponti Rolleer, which was thought to represent possibly no more than a geographic race of 'P.' frontalis has $\mathrm{H} / \mathrm{UA}(104 / 140)$ within the range of E. (E.) lunare projected to larger sizes. H/UA of the figure of ' Ch .' ('Psendamussutm") chartromi Cossman (7) from the Hettangian of France is also within the range of E. (E.) lamare. The depth of the byssal notch is more reminiscent of C. (C.) subulatus but in spite of Cossmann's statement to the contrary the auricles of one figured specimen extend dorsally beyond the hinge line so his species may be an early and morphologically extreme representative of E. (E.) lmnare. 'P.' Di-Blasii Di Stefano, from the L. Lias of Sicily has rather pronounced comarginal ornament but as it is in other respects identical to E. (E.) lunave this may be another aspect of variation.

The equal-sized auricles of ' P.'sepultus Quenstedt, a small smooth species from the L. Lias of Swabia, suggest that it belongs to E. (E.) lunave rather than the common co-occurring

Text fig. 27: Outer surface of a slightly abraded right valve of Entolium (E.) lunare showing divaricate fibres. Specimen (BSPHG 1983 XVII 8) from Frodingham 1ronstone; $\times 1.6$.
species C. (C.) subutlatus. However, the affinities of ' P.' amatus Andler, from the same horizon and region, diagnosed merely as a smooth flat shell with comarginal striae, could lie with either of the above species. ' P,' demissaries Cross was given a similarly inadequate diagnosis but is probably synonymous with E. (E.) lunare rather than C. (C.) subulatus since the horizon of derivation (Frodingham Ironstone) is one in which the former species is much more abundant than the latter (see Section 7).
'P.' glaphyrus R. Philipri was distinguished from the Callovian species 'P.' demisshs ($=E$. (E.) comeolum) by the relatively undiagnostic criterion of auricle angularity. However, in so far as the species is described from the U. Pliensbachian (prior to certain records of E. (E.) comeolum) it probably belongs to E. (E.) lunare. Although described from the Callovian Entolium sp. A. Durf has a clear byssal notch, unlike the much more common contemporaneous species E. (E.) corneolum, and may therefore be a late representative of E. (E.) lunare. The small size of the available material does not however allow exclusion of the possibility that E. sp. A is an early representative of E. (E.) orbiculare (see above) or an essentially S. European Tithonian species which bears a superfical resemblance to E. (E.) lunare but which can be readily
distingushed in large specimens by the much higher $\mathrm{HAA}_{\mathrm{R}} / \mathrm{L}$ (8,9 ; specimens referred respectively to ' P.' insularum d'Orbigny [MNS] and 'Ch.' cf. poecilographa Gemmellaro and Di Blasi [GPIT]).

Goldfuss' (1836) name ' P.' calvus ($=\mathrm{C} .(\mathrm{C}$.$) subulatus \mathrm{q}$. v.) has been misapplied by Staesche (1926) and Troensson (1951) to figured specimens with the small byssal notch typical of E. (E.) linnare. It is thus possible that unillustrated records of Goldfuss' species in D'Orbigni (1850), Tate and Blake (1876) and Joly (1907) may also refer to E. (E.) lunare.

5. STRATIGRAPHIC RANGE

Two specimens from the Planorbis zone (Hettangian) of the Italian Alps (Bistram, 1903) together with an indeterminate number of specimens from the same horizon in S. Germany (Staesche, 1926), Roemfr's (1839) material, probably from N. Germany, and questionable specimens from the W. Paris Basin (Commann, 1904; see Section 4) constitute the earliest records of E. (E.) linare. The species is recorded rarely in the Angulata zone of the Rhone basin (Dumortier, 186t) and may also occur at the same horizon in S. Germany (A v Dlfr, 1858; see Section 4). Dechaseaux (1836) records the species from an unspecified horizon in the Hettangian of the E. Paris Basin. E. (E.) lunare becomes common in the Bucklandi zone and is thereafter widespread and locally common until the U. Pliensbachian. Toarcian records are equivocal because all potential examples of E. (E.) lunare have poorly preserved auricles and so cannot definitely be separated from E. (E.) corneolitm by the diagnostic criterion. However, a specimen in the GPIG (Pl. 1, Fig. 23) from the Toarcian of S. Germany has H/UA (10) well outside the range of E. (E.) corneolum and this specimen together with four others from the same area in the GPIT, one from Yorkshire (SM J50642) and one from Gloucestershire (BM L94280), all of which plot within the range of text fig. 21 , seems to indicate that E. ($E_{\text {. }}$) linare extended into the Toarcian. All but the first mentioned are from the upper substage.
M. and U. Jurassic bibliographic records which may refer to E. (E.) linare must be treated with great caution (see Sec-

Text fig. 28: Entolum (E.) lunare - European distribution.

Text fig. 29: Entolum (E.) linare - World distribution (Pliensbachian reconstruction).
tion 4). A slight byssal notch is present in a smooth right valve (OUM J26053) from the L. Tithonian (Pectinatus zone) near Oxford but in view of the possible development of such a morphology in E. (E.) orbiculare (see p. 36) it can only tentatively be accepted as an U. Jurassic record of E. (E.) lunare.

6. GEOGRAPHIC RANGE

Within Europe (text fig. 28) E. (E.) lanare is a widespread species. Outside Europe (text fig. 29) occurrences are widely dispersed and are not connected by obvious migration routes. Records from S. America might be understood as the result of a migration along the northern shores of Tethys by linking occurrences in the Carpathians (Pompec.kj, 1897) and Japan (Hayam, 1961). However depending on the tectonic reconstruction adopted records from the Carpathians might be held to indicate migration along the southern shores of Tethvs, perhaps utilising a marine connection between Africa, Antarctica and S. America (see p. 25).

7. DESCRIPTION OF ECOLOGY

E. (E.) lunare first uccurs commonly in the Arietenkalk (L. Sinemurian, Bucklandi zone) of S. W. Germany in association with quite common examples of Camptonectes (C.) subulatus and Chlamys (Cb.) textoria. The maximum height of E. (E.) Iunare is 51 mm (GPIT). Deposits of the same age and probably similar facies in the Rhone also contain abundant E. (E.) lunare in association with Pseudopecten (Ps.) equitaleis (Dumortier, 1867). In the U. Sinemurian (Obtusum zone) part of the Frodingham Ironstone, a condensed chamosite oolite in Lincolnshire, E. (E.) Intnare occurs with all the above species but is much the most numerous element of the fauna, attaining a maximum height of 57 mm (ScM 1099). In contemporaneous argillaceous facies (Hallam, 1963) and similar facies in the L. Pliensbachian E. (E.) linare is greatly outnumbered by C. (C.) subulatus. However, in neretic limestones, probably of L. Pliensbachian age (see p. 79) in Sicily (Di Stefano, 1886) C. (C.) subulatus is absent
and E. (E.) lanare occurs commonly with Ps. (Ps.) erevaseniss. I. Pliensbachian sandstones in E. Greenland (Ruren. RRAVTZ, 193t) are reported to contain abundant examples of E. frontale (Devirtirk), a probable synonym of E. (E.) lunave (see Section 4) in association with common Ps. (Ps.) equivaluis. The latter species greatly outnumbers E. (E.) lunare in the condensed chamosite oolites ('Pecten' Beds) of the Ibex zone in Gloucestershire and Lincolnshire and in sandstones (Sandy Series) and condensed chamosite oolites (Cleveland Ironstone) of the Margaritatus zone in Yorkshire. A similar situation pertains in ironstones of the Spinatum zone (Marlstone) in the Midiands where the species reaches a maximum height of 116 mm (BM 46444). However, in sandstones of the Margaritatus zone (Thorncombe Sands) in Dorset the relative proportions are reversed although the maximum height of E. (E.) lunare is only 37.5 mm (BM LL30727). In contemporaneous clays in lorkshire E. (E.) litnare is greatly outnumbered by C. (C.) subulatus and reaches a maximum height of only 25 mm (author's collection). Apart from the above cases, E. (E.) limare, although widespread, is only known to be common in the Gresten Beds of Austria (Trauth, 1909) where Ch. (Ch.) textoria and P_{s}. (Ps.) dentatus are also quite common.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that E. (E.) lumare exhibited considerable eurytopy with respect to substrate. However, if maximum size is taken as a measure of environmental favourability then, at least in the U. Pliensbachian, condensed ironstones can be seen to have offered more suitable conditions than sands or clay's. This can presumably be explained, in the same way as suggested for Ps. (Ps.) equivalvis (see p. 71) by the reduced turbidity and possibly increased temperature characteristic of ironstone deposition. Specimens from the Sinemurian Arieten-Kalke which are not much smaller than those from the roughly contemporaneous Frodingham Ironstone may well be derived from condensed horizons within the predominantly argillaceous sequence (Urlichs, 1971).

If abundance is taken as a measure of environmental favourability then sandstones appear to have been just as suitable as ironstones. In both facies a frequent inverse correlation in the numbers of E. (E.) lunare and P s. (Ps.) equivalvis is strong evidence for competition. In sandstones the dominant species appears to fluctuate at random from place to place but in ironstones E. (E.) lunare apparently lost its competitive superiority after the Sinemurian and P s. (Ps.) equivalvis became dominant. There is no evidence for a similar competitive reaction with Ps. (Ps.) dentatus, Ps. (Ps.) veyrasensis or Ch. (Ch.) textoria.

Competition with C. (C.) subulatus is suggested by the tendency after the L. Sinemurian for E. (E.) lunare to be most abundant in arenaceous facies, a trend essentially opposite to that observed in the former species (q.v.).
Recent analogues of E. (E.) lunare are provided by species of Amusium. Most live in deep water (KNuDSEN, 1967) but some, such as A. pleuronectes and A. japonicum, migrate considerable distances into shallow water for the purpose of spawning (B. Morton, pers. comm., 1978). Swimming ability is excellent, with 'flights' of at least 10 m being possible, even at shell lengths near 100 mm . Stationary individuals recess into the sea bed.

9. FUNCTIONAL MORPHOLOGY

The small juvenile byssal notch and its subsequent allometric reduction in size imply that E. (E.) lunare could only have been byssally attached for a very short period early in ontogeny.

The large, smooth, low convexity shell is paradigmatic for reclining in the high energy environments favoured by the species. The dorsally extended auricles of the right valve may have assisted reclining in the same way as suggested for Propeamussium (P.) laeviradiatum (see p. 31). The thin shell is non-paradigmatic for reclining but probably represents an adaptation towards improved swimming efficiency, combined with ontogenetic increase in the umbonal angle. Smoothness and low convexity are also adaptive for swimming, but large size is not. However, bearing in mind the sizes at which swimming is possible in Amusium (see Section 8), it seems likely that the thinness of the shell offset any disadvantage resulting from the greater weight associated with large size.

Due to the rarity of bivalved specimens and generally poor preservation of the muscle scars, it has proved impossible to judge whether the high values for adductor muscle obliquity (Thayer, 1972) and moment (Gould, 1971) which contribute towards the considerable swimming ability of Amusium, are also characteristic of E. (E.) linnare.

The internal costae which presumably compensate for the reduced strength and stiffness of the smooth, non-plicate shell in Amusium would appear to be functionally represented by divaricate fibres within the shell of E. (E.) lumare.

10. ORIGINS AND EVOLUTION

Since E. (E.) lunare is first recorded in the Planorbis zone its origins probably lie in the Trias. E. (E.) discites
(Schlothem), a Trias species with a slight byssal notch seems to be the most likely ancestor.

There are no phyletic trends within E. (E.) lunare apart from a marked increase in maximum height in the same ironstone facies from 57 mm in the U . Sinemurian to 116 mm (possibly 145 mm , see Section f) in the U . Pliensbachian. It should, however, be noted that the value of $3^{1} / 2^{\prime \prime}(88 \mathrm{~mm})$ cited for the "diameter" of Roemfr's holotype from the Hettangian (Brauns, 1871) almost certainly implies a height greater than that attained in the U. Sinemurian, albeit in an isolated specimen.

The Toarcian decline of E. lunare may well be due to the widespread development of unfavourable bituminous shale facies in the lower substage. However, the fact that there appear to be at least a few U. Toarcian representatives (see Section 5) suggests that competition with E. (E.) corneolutm, a species which apparently evolved in the latter substage, may also have played a part.

Entolium (Entolium) corneolum (Young and Bird 1828) Pl. 1, Figs. 24-26, ? Figs. 20, 22, 27; text figs. 30-37

Synonymy

1828 ; Pecten comeolus sp. nov; loung and BiRD, p. 234, pl. 9, fig. 5
$\mathrm{v}^{\geqslant} 1829$ Pesten demissus sp. nov; Phullups, pl. 6, fig. 5.
? 1833 Pccten Phillipsii sp. nov; VOLTz in Thurmann, p. 32.

1833 Pecten disciformis sp. nov; SCHUBLER in v. Ziften, p. 69, pl. 53, fig. 2.
pr? 1836 Pecten cingulatus sp. now; GoldFuss, p. 74, pl. 99, figs. 3a, 3b.
? 1836 Pecten subcomatus sp. nov; ROEMER, p. 70, pl. 3, fig. 17.
1836 Pecten zitrcus sp. nov; Roemer, p. 72, pl. 13, fig. 7
1836 Pecten solidus sp. nov; ROEMER, p. 212, pl. 8, fig. 5.
1839 Pecten spathulatus sp. nov; ROEMER, p. 26, pl. 18, fig. 22.
v non 1850 Pecten disciformis Schubler, D'Orbigny, v. 1 , p. 237.
v? 1850 Pectcn Proeteus sp. nov; D'Orbigny; v. 1, p. 257.
v* 1850 Pecten silenus sp. nov; D'Orbigni, v. 1, pp. 284, 314 (BOULE, 1910, v. 5, p. 69, 1909, v. t. pl. 20. fig. 12).
v* 1850 Pecten Rhypheus sp. nov; D'Orbigny, v. 1, p. 314 (BOULE, 1913, v. 8, p. 92, pl. 2, figs. 24, 25).
v^{*} ? 1850 Pecten subcingulatus sp. nov: D"Orbigny, v. 1, p. 374 (BOULE, 1927, v. 16, p. 132, 1928, v. 17, pl.6, fig. 9).
v non 1852 Pecten cingulatus Goldfuss; Quenstedt, p. 506. pl. 40, fig. 41.
1853 Pecten disciformis Schubler; Chapuis and De WALQUE, p. 21, pl. 31, fig. 2.
1855 Pecten demissus Phillips; Morris and L.ycett, p. 127, pl. 14, fig. 7.
$v * 1855$ Pecten censoriensis sp. nov; COTTEAU, p. 112.
v 1858 Pecten demissus Phillips; Quenstedt, pp. 353, 381,553, pl. 48, figs. 6, 7, pl. 72, fig. 27.
$v^{* 2} 1858$ Pecten demissus Gingensis subsp. nov; QUEN. STEDT, p. 378, pl. 51, fig. 1.
1858 Pecten spatbulatus Roemer; Quenstedt, p. 433, pl. 59, fig. 13.
(?) 1858 Pecten Renevieri sp. nov; OpPEl, p. 420.
1860 Pecteri Silenus d'Orbigny; Coquand, p. 68.

1860	Pecten demtstas Phillips; COQland, p. 73.
1860	Pecten soldtus Ruembr: Couuand, p. 79
1860	Pecten demustus Phil lips; Damun, pl. 9, fix
? 1862	Pecten Nicoleti sp. nor; Eitallon in Thurmann and ÉTALION, p. 263, pl. 37, fig. 5.
1862	Pecten soldus Rur mir: Thurmann and Étal Lon. p. 262, pl. 37, fig. 5.
1862	Pecten demissus Phillipऽ; Trautschold, p. 2, pl. 7, figs. 2, 4 (non fig. 3).
non 1866	Pecten demissas Philips; Lindstrom, p. 14, pl. 3, figs. 9, 10.
1867	Pecten spathlaths Rofmer; Laube, p. 9.
1867	Pecten demissus Phillifs; Laube, p. 10.
$? 1867$	Pecten Gingensis Ql fnetedt; Waagen, p. 627.
? 1867	Pecten oblongus sp. nov; WaAgFn, p. 629.
? 1869	Pecten disaformus Sc hubler; Dunortier, p. 199.
1869	Pecten congutatus Goldelss; Terquem and Jourdy, p. 127.
1875	Pecten solidus Roymri; ide Loriol and Pellat, p. 189, pl. 22, fig. 5.
? 1876	Pecten Prlatensis sp. nov; Favre, p. 65, pl. 7, fig. 3.
? 1881	Pecten zitreus Romer. ; De Lorioi, p. 93, pl. 13, figs. 3-5.
1882	Pecten (Entoluem) vitreus Roemer; Roelefr, p. 56, pl. 2, figs. 2a, 2b, pl. 4, figs. 14a-d.
1883	Pecten demassus Philidps; LaHusen, p. 24, pl. 2. fig. 4.
non 1883	Pecten demassus Philliph; Lundgren, p. 16, pl. 2, fig. 12.
1883	Pecten demussus Phillips; Whidborne, p. 498.
? 1883	Pecten demustus var. mutule var. now; Whirs BORNE, p. 499.
(?) 188.3	Pecten gmgensis Quensteit; Whidborne, p. 499.
? 1884	Pecten disciformis Schubler; Simpson, p. 172.
(?) 1885	Pecten (Amustum) Polutensas l:Avre; Nicolis and Parona, p. 45.
1886	Pecten discifornis Schubler; Rothplftz, p. 36.
1888	Pecten Rypheris D'Orbicny; Schlippe, p. 126, pl. 2, fig. 6.
1893	Pecten (Entohum) angulatus GOLDEUss; BottoMicca, p. 174.
1893	Pecten untrems Romar;1il Loriol, p. 312, pl. 33, fig. 8.
1893	Chlamys (Pecten) zitrea (Roemhe); Siedmiradz Ki, p. 119.
1894	Pecten (Entolum) disciformis SChublfr: Moricke, p. 37.
1895	Pecten -itreas Ropmer; De L Oriol, p. 45.
1896	Pecten demassus Phillips; Semenow, p. 63
1897	Pecten viticus ROEMER; DE LORIO, p. 129, pl. 16, figs. 5, 6.
? 1897	Pecten demustrs Phillim; POMPECKJ, p. 779.
? 1897	Pecten disciformis Schublir; Pompeckj, p. 779.
1898	Pecten (Entolnum) cingzhitus Goldfuss; Greco, p. 109, pl. 8, figs. $30,31$.
1898	Pecten (Entolutm) disciformis SCHUBLER; TORN QList, p. 31.
1899	Pecten demissus Philifps; Simionfscl, p. 215, pl. 2, fig. 6.
- 1903	Pecten (Entolum) dratormis SCHOBLER; Burce HAKII, p. 22, ? p. 8.
1904	Pecten zitrehs Romanr; Ilovalsk), p. 251, pl. s, lig. 13.
1905	Pecten (Chlamys) cf. Ryphens D'Orbigni; Kil ian and Guebhard, p. 743.
(?) 1905	Pecten (Entolutm) gingensas Qulinstedt; Kuluan and GUebhard, p. 743.
1905	Pecten of. disaformes Schobler; Kilian and Glebhard, p. 743.
1905	Pecten (Entolum) demussus PHillips; Killan and Glebhard, p. 766.

v 1905 Pecten censorzensts COTtEAU: PERON, p. 232, pl. 10 , figs. 5,6 .
1907 Pecten demissus Phillips; Deninger, p. 453.
1908 Pecten (Entolnm) vitrezs ROEMER; LEWINSKI, p. 435.

1910 Entolutm demissus (PHIILIPS): LissAJOU4, p. 363, pl. 10, figs. 7, 8.
1910 Pecten (Entolum) demissus Phillips; RavN, p. 463.
? 1910 Pecten (Entolium) cingulatus Goldruss; Ravn, p. 464, pl. 33, fig. 7.

1911 Pecten (Entolitm) vutreus ROEMER: BODEN, p. 193, pl. 7. figs. 17, 18.

1911 Pecten (Entolum) disaformus SCHubler; Rol LII R, p. 260.
? 1911 Pecten (Entolum) Giengensis sp. nov; Rollier, p. 260.

1911 Pecten (Entolum) Silenus D'Orbigni; Rollier, p. 260.

1911 Pecten (Entolium) Rypheus D'Orbigny; ROllier, p. 261.

1911 Pecten (Entolum) spathulatus ROEMER; ROLIIER, p. 262.
? 1911 Pecten (Entolium) cmgnlatus Goldfuss; Rolilfr, p. 263.

1915 Pecten demissus PHILLIPS; Krenkel, p. 296.
non 1916 Entolizm desciforme (SCHUBLER): COSSMANN, p. 45, pl. 8, figs. $10,11$.

1916 Pectendemissus Phillips; Douville, p. 75, pl. 10, fig. 2.
1917 Pecten demissus Philifs; Borissiak and 1VANOFF, p. 3, pl. 1, figs. 5, 8, 10, 15, 17.
1917 Pecten spathulatus ROEMER; BORISSIAK and IVANOH: p. 6, pl. 1, fig. 13.

1917 Pecten vitreus Rofmer; Borissiak and IVANOFF, P. 8, pl. I, figs. 1, 2, 12, 16 (non fig. 4).

1919 Entolitm silenus (D'Orbigny); Cossmann, p. 436.

1920 Pecten sohdus Roemier; Faure-Marguerit, p. 55.

1923 Pecten if. vatreus Rolmri; Leminski, p. 60, pl. 2, fig. 11.
1923 Syncycloncma demissum (Phillips); Lissajous, p. 167.

1923 Syncyclonema spathulathm (ROEMER); LISSAJOUS. p. 168.

1924 Entolium leachi sp. nov; MCLEARN, p. 48, pl. 5, figs. 3, 11.
1924 Pecten (Entolium) denisshm Phillips; Hennig, p. 14, pl. 2, ligs. 1.2.
v? 1926 Entolum Proeterts (D'OrbIGNY): STAFSCHE, p. 92. pl. 6, figs. 3, t.

- 1926 Entolitm Renevieri (Oppel); Staesche, p. 93, pl. 3, fig. 4, pl. 6, fig. 6.
? 1926 Entolium cingulatum (Goldeuss); Staesche, P. 93, pl. 4, figs. 3, t.
v 1926 Entolizm demissum (PHillips); STAFSCHL, p. 99, pl. 4. lig. 5.
v? 1926 Entolizm Gingense (Quenstedt); StarsCHE, p. 102, pl. 5, figs. 1, 2.
? 1926 Entolnim aff. solido (ROEMER); Staesche, p. 103, pl. 3, figs. 13-15.
1926 Entolum disciformis (SCHUBIER); ROMAN, p. 155.
1926 Entoliun spathulatus (ROrMIR); Roman, p. 168.
1926 Entolum vitreus (ROEMER); ROMAN, p. 198.
1929 Pectenn (Entolum) demissus Phillipヶ; LANQuine, p. 199.

1929 Pecten (Entolium) valauryense sp. nov; LAN: Quine, p. 324, pl. 10, fig. 7.
v 1930a Entolum demissum (Phillips); Arkfle, p. 91, pl. 7, fig. 4, pl. 9, fig. 8, text figs. 15-17.
1931 Pecten (Camptonectes) vitreus ROEMER; Yin, p. 118.

1931 Pecten (Entolium) of. demissus Phillips; SOKOLOV and BODYlfy'sky, p. 50, pl. 3, fig. 5.
(?) 1931 Pecten (Entolium) cf. Nicoleti Étallon; Soko LOV and Bodylevsky, p. 52.
1932 Entolium demissim (Phillips); Spath, p. 112, pl. 26, fig. 2.
1933 Pecten (Entolium) solidus ROEMER; DIETRICH, p. 65, pl. 8, figs. 118, 119.

1934 Pecten (Entolium) demissus (Phillips); Stoli, p. 22, pl. 2, fig. 21.
? 1934 Entolium denissum (Phillips); ROSENkrantz, p. 117.

1935a Entolium demissum (Phillips); Arkell, p. X, pl. 53, fig. 3.
1935 Pecten (Entolium) cf. demissus (Phillips); Spath, p. 56.
? 1936 Entolium cingulatus (GOLDFUSS); Dechaseaux, p. 60.

1936 Entolizm disciformis (SCHUBLER); DECHASEAUX, p. 61, pl. 8, figs. 12, 13.

1936 Entolitm demissus (Phillips); Dechaseaux, p. 61.
(?) 1936 Entolinm Gingensis (Quenstedt); Dechaseaux, p. 63.

1936 Entolium spatbulatus (ROEMER); DECHASEAUX, P. 63.
? 1936 Entolium cf. demissmm (PHILLIPS); WANDEL, p. 481.

1938 Entolium demissum (PHILLIPS); WEIR, P. 46, pl. 3, fig. 8.
non 1939 Entolizm disciforme (SCHUBLER); STEFANINI, p. 177, pl. 19, fig. 15, pl. 20, fig. 1.

1939 Entolium demissum (Phillips); Stefanini, p. 179, pl. 22, figs. 2, 3.
1948 Entolium comeolnm (YOUNG and BIRD); COX and Arkele, p. 15.
1950 Entolum comeolum (YOUNG and BIRD); CHANNON, pp. 247, 248.
? 1951 Entolium cingulitum (GoldFuss); Troedsson, p. 217, pl. 20, figs. 1-3, pl. 21, figs. 11, 12.

1952 Entolum demissum (PHILLIPS); MaKOWSK1, p. 17.
1954 Pecten (Entolitum) disciformus (SCHUBLER); DEAN, p. 176.

1957 Entolium leacho McLearn; Frebold, p. 21.
1961 Entolum cf. disciforme (SCHOBLER); HayAM1, p. 255.

1961 Entolium demissum (Phillips); Barbulescu, pp. 701, 702.
1961 Entolium cf. cingulatunt (GOLDFUSS); BARBULESCU, P. 702.
non 1964 Entolium cingulatum (GOLDFUSS); WELLNHOFER, p. 35, pl. 1, figs. 28-30.

1965 Entolium corneolum (YOUNG and BIRD); COX, p. 51.
? 1965 Entolium cingulatum (GOLDFUSS); COX, p. 52, pl. 6, fig. 15.
? 1966 Entolium proteus (D'OrbigNy); Behmel and Geyer, p. 28.
? 1966 Entolium demissus (PHILIIPS); BEHMEI and GEYER, p. 28.
? 1970 Entolium cingulatum (GOLDFUSS); BEHMEL, p. 62.
1971 Entolium cingulatum (GOLDFUSS); Barbulescu, p. 277.
? 1971 Entolitm proetets (D'OrbiGNi); WENDT, p. 156.
1971 Entolium comeolim (YOUNG and BIRD); WFNDT, Pp. 159, 161.
? 1971 Entolium cf. cingulatum (GOIDFUSS); WENDT, p. 160 .

1971 Entolum comeolim (YOUNG and BIRD); FUR SICH, p. 320.
?1974 Entolum cingulatum (GOLDFUSS); Nitzopoulos, p. 46.

1975b Entolium demissum (PHiLLIPS); HallaM, p. 384.
1977 Entolium demissum (PHillips); Dietl, pl. 2, fig. 4.
1977 Entolum demissum (Phillips); J. Wright, P. 330.

1978 Entolium (Entolum) comeolum (YOUNG and Bird); DuFF, p. 62, pl. 4, figs. 25, 29, 30, pl. 5, figs. 3-5, text fig. 20.
1978 Entolitm corneolttm (YOUNG and BIRD); BROOK FIFLD, PP. 10, 15, 17, 26.

Neotype of Pecten comeolus Young and Bird 1828, p. 234 , pl. 9 , fig. 5 designated by Duff, 1978, p. 62; OUM J8151; figured Arkele, 1930a, pl. 7, fig. 4; H: 68, AL: 26, $\mathrm{I}_{\mathrm{R}}:+1, \mathrm{HAA}_{\mathrm{R}}: 16.5$, UA: 113 ; Osmington Oolite (M. Oxfordian), Malton, Yorkshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'No. 5, also from the oolite, is smooth, brown, and thin like Sowerby's P. corneus, Tab. 204; but it is more oblong, and has smaller beaks. We may give it the name P. comeolus.'

2. AMENDED DIAGNOSIS

Distinguished from E. (E.) lunare by the lack of a byssal notch and from E. (E.) orbiculare by the lack of comarginal grooves on the right valve.

3. AMENDED DESCRIPTION

Essentially similar to E. (E.) lunare, differing by the diagnostic lack of a byssal notch (Pl. 1, Fig. 24), by the slower allometric reduction in H/L (text fig. 30), by the smaller maximum height (90 mm ; NM, YM 531), by the slower rate of increase in umbonal angle, leading to generally higher H/UA values (text fig. 32), by the equality and isometric increase of the intersinal distance in both valves (text. figs. 33, 34), leading to much higher I/L values in the right valve, and by the isometric increase in height of the anterior auricle and probable allometric increase in the separation of the auricular apices, leading to higher values of $\mathrm{HAA}_{\mathrm{R}} / \mathrm{L}$ (text fig. 35) and AL/L (text fig. 31).

4. DISCUSSION

Examples of the species described in Section 3 have most often been referred to 'Pecten' demissus Philups. The sole known type (YM 202), a rather atypical form with a narrow umbonal angle (1), was said by Arkeli (1930a) to exemplify Oxfordian forms of Entolium as distinct from Bajocian and Bathonian forms which were said to have a larger umbonal angle. Roemer's (1836) species 'P.' solidus (2) and ' P.' vitrens (3), also from the Oxfordian, were placed in synonymy with 'P.' demissus on the basis of comparable umbonal angles. Arketi originally considered that Bajocian and Bathonian forms should be referred to d'Orbigny's (1850) species 'P.' Rhypheus (syntypes [2] MNO 2908) but he later (1935a)

Text fig. 30: Entolium (E.) corneolum - height/length.

Text fig. 31: Entolizm (E.) corneolum - separation of auricular apices/length.

Text fig. 32: Entolium (E.) corneolum - heigth/umbonal angle.
considered that they should be united with forms referred to 'P.' demissus (a conclusion supported by text fig. 32) under the slightly earlier name of ' P.' comeolus Young and Bird (1828). The figure of the latter species is poor and the original is now lost. However, the description (see Section 1) leaves little doubt as to its affinities and Duff has now designated an appropriate neotype (OUM J8151; 4). Middle Jurassic representatives of E. (E.) corneolttm have usually been referred to either ' P.' disciformis Schublfr or ' P.' spathulatus Roemer. H/UA of the original figures of both species (5 and 6 respectively) from the M. Jurassic of Germany, is within the range of E. (E.) corneolitm although that of 'P.' spathulatus is near the limit of variation in measured specimens.
Lindstrom's (1866) and Lundgren's (1883) incorrect records of Phillips' species are discussed under E. (E.) lunare. Because of the possibility of confusion with the latter species in the Toarciars, unfigured records of Philulps' species from that stage in Pompeckj (1897), Rosenkrantz (1934), Wandel (1936), Dean (1954) and Behmel and Geyer (1966) must be treated with considerable caution. Unfigured Toarcian records of Schubler's species in Dumortier (1869), Simpson (1884), Pompeckj (1897), Burcrhardt (1903) and De chaseaux (1936) must be similarly treated. Pre-Toarcian figured specimens reffered to Schubifr's species by d'Orbigny (1850) and Cossmann (1916) in fact belong to E. (E.) lunare as, most probably, do a number of unfigured specimens discussed under the latter species. Stefanini's (1939) figured specimen from the Bajocian of Somalia, referred to E. (E.)
disciforme, exhibits quite pronounced radial ornament and is therefore not representative of E. (Entolium). Trautschold's (1862, pl. 7, fig. 3) figured specimen from the Tithonian of Russia, referred to ' F.' demissus, exhibits a large byssal notch and is probably an example of Camptonectes. Tausch's (1890) unfigured record of Roemer's 'P.' spathulatus from the Toarcian of the S. Alps must be viewed with the same scepticism as other unillustrated records of E. (E.) corneolum from the stage. Df Loriol's (1881) illustrated record of Roemer's 'P.' vitreus and Stafsche's (1926) illustrated record of Roemer's ' P.' solidus both refer to specimens with rather pronounced comarginal ornament which may thus be referable to E. (E.) orbiculare.

Borissiak and Ivanoff's (1917, pl. 1, fig. 4) figure of ' P.' vitreus depicts a specimen with a slight byssal notch which is thus not referable to E. $(E$.$) comeolum. In the pre-$ sent state of knowledge (see p. 36) it is impossible to say whether it should be referred to E. (E.) linare or E. (E.) orbiculare.
' P.' subcomatus Roemer from the Bathonian has H/UA (7) only just within the range of E. (E.) corneolum and until the type material is examined the possibility cannot be entirely excluded that the divaricate lines on the figure are in fact representative of the divaricate striae of Camptonectes (C.) laminatus. The fine radial striae on a syntype of ' P.' subcingulatus d'Orbigny (MNO 3763) from the Oxfordian suggest that the species is referable to Propeamussium, despite its en-

Text fig. 33: Entolium (E.) corneolum - intersinal distance on left valve/length.

Text fig. 34: Entolium (E.) comeolum - intersinal distance on right valve/length.
tolioid form. However, the syntypes of ' P.' silenus w'Or BIGNY (MNO 2904) are completely smooth and have metric proportions (8) well within the range of E. (E.) comeolum.

The subspecies ' P.' demissus Gingensis Quenstedt was erected for a large specimen (GPIT) from the Bajocian of Gingen (S. Germany) with large, symmetric auricles. Apart from $\mathrm{I}_{\mathrm{L}} / \mathrm{L}$ all metric proportions (9) plot within the range of E. (E.) corneolum and the absence of intermediate sized specimens prectudes any assessment of whether the large I_{L} / L (54/88) is the product of some hitherto undetected allometry or is indicative of a more profound difference. Topotype specimens (identified with a glyph) of which only five are known (GPIT, GPIG [3], MNS) plot within the range of E. (E.) comeolum projected to larger sizes but have strong auricular crura and thick shells (Pl. 1, Fig. 27) which may justify Wangen's (1867) elevation of the subspecies to specific rank. Waagen erected a further species, ' P '. oblongus, for forms with large auricles from the Bajocian of Gingen. Although unillustrated it seems quite possible that they are synonymous with ' P.' Gingensis, if not with E. (E.) corneolim. Whidborne (1883) recorded a further unfigured specimen of ' P.' gingensis from the Northampton Sand Ironstone (Aalenian) and also created the variety inutile for forms of ' P.' demissus with large auricles. It seems likely that they too are representative of ' P.' Gingensis. Whidborne's variety celatus was said to have radiating lines and may therefore be representative of Propeamussium rather than E. (Entolium).

The figure of 'P.' Nicoleti Étallon (? holotype: École cantonale de Porrentruy [W ${ }_{\text {annifr }}$ and Panchaud, 1977]) from the Kimmeridgian of Switzerland has extremely high H/L and H/UA (10) but at least with respect to the latter parameter it is comparable to the single type of ' P.' demissus Phillips (1) and may therefore be no more than a narrow form of E. (E.) corneolitm.
'P.' Pilatensis Favre, from the Oxfordian of Switzerland, was compared with ' P.' denissus and ' P.' vitreus but has rather strong comarginal ornament and thus may be representative of E. (E.) orbiculare rather than E. (E.) comeolum.

The syntypes of ' P '. censoriensis Cotteau (MNS B. 03983; Pl. 1, Fig. 26) from the Oxfordian of the Yonne can only be distinguished from E. (E.) corneolum by a somewhat low $\mathrm{HAA}_{\mathrm{R}} / \mathrm{L}$ (11). Since only two specimens are available it seems unwise to regard them as specifically distinct. Likewise it seems improper to separate E. leachi Mclearn on the basis of a somewhat low H/UA (12) when all other proportions of the figured specimen are similar to those of typical representatives of E. (E.) comeolum. Metric proportions of 'P.' (E.) valauryense Lanvuine (13) from the Bathonian of Provence, are entirely within the range of E. (E.) corneolum.

Goldfuss (1836) apparently based his concept of ' P.' cingulatus on a specimen from the Oxfordian figured by Phillips (1829, pl. 5, fig. 11) as ' P.' sp. The latter possesses a slight byssal notch and may be a late representative of E. (E.) lunare (q. v.). However additional figures of ' P.' cingulatus provided by Goldfuss show no sign of a byssal notch and are not dissimilar to E. (E.) corneolum. What may be regarded as paratypes in the GPIB $(610 \mathrm{a}, 610 \mathrm{~b})$ could certainly be taken to be representatives of E. (E.) comeolim. However, comarginal ornament is quite strongly developed (Pl. 1, Figs. 20, 22) and this, together with the fact that the example figured in Pl. 1, Fig. 22 has a smooth opposite valve, suggests that the specimens may possibly be representative of E (E.) orbiculare (cf. Pl. 1, Fig. 19). Goldfuss cited localities in both the L. and U. Jurassic for his species, thus his hypodigm could well have included E. (E.) lunare in addition to one or other of E. (E.) corneolum and E. (E.) orbiculare. However, D'Orbigny (1850) subsequently created 'P.' Philenor and 'P.' Proeteus for L. Jurassic forms which he would otherwise have assigned

Text fig. 35: Entolium (E.) corneolum - height of anterior auricle on right valve/length.
to 'P.' cingulatus and, following Staesche (1926), Cox(1952, 1965) has taken this to imply a restriction of Goldfuss' hypodigm to U. Jurassic forms. It should be noted in passing that Dechaseaux (1936) and Troedshon (195I) have applied Goblifuss' specific name to L. and M. Liassic forms of E. (Entoliun) which are, in consequence of the horizon of derivation, very probably representative of E. (E.) lunarc. Examples of E. (Entolium) from U. Jurassic marls in S. Germany, whence some of Golduss' paratypes were derived, appear to be distinguishable from E. (E.) comeolum (the E. (Entolium) species usually encountered elsewhere at this time) by a low UA. However, text fig. 32, in which these specimens are identified with a double glyph, shows that this is an illusion created by small size. Nevertheless, certain specimens collected by WFlinhohfr (1964) from marls in the U. Jurassic of S. Germany probably differ from E. (E.) corneolum in the possession of internal ridges (see p. 36) and it could be that Goblofuss' paratypes are similarly distinct. The affinities of Goidfuss' species are thus extremely uncertain and while it seems likely that most authors would apply the name cingulatus to specimens referable to E. (E.) comeolum there remains the possibility for U . Jurassic forms that Gold. fuss' specific name could be applied to E. (E.) orbiculare or to the probably separate species with internal ridges. Specimens figured by Ravn (1910) and Cox (1965) appear similar to Well nhofer's material while specimens referred to E. cingHatum by Staesche (1926), apparently with strong comarginal ornament, may be representative of E. (E.) orbiculare. However, unillustrated U. Jurassic specimens referred to Goldeuss'species by Rolifre (1911), Behme1 (1970), Wendt (1971) and Nitzopoulos (1974) are of completely indeterminate affinities. Since neither the 'species' with internal ridges nor E. (E.) orbiculare are known definitely to occur before the U. Jurassic, unillustrated M. Jurassic records of Goldfuss' species in Terquem and Jourdy (1869), Butto-Micca (1893) and Barbulescu (1961, 1971), together with Greco's (1898) poorly illustrated record, can be ascribed with some confidence to E. $(E$.$) corneoltm. The specimen (GPIT$ 4-74-10; P1. 1, Fig. 11) figured by Qufnstedt (1852) as 'Pecten' cingulatus (accorded the name 'P.' cornutus by QuFNs TEDT in 1858) has extremely extended auricles on the right valve and in this respect resembles Propeamussitim (P.) laceriadiatum (see however p. 29). It is possible (see p. 11) that some of the specimens referred to D'Orbigny's (1850) replacement specific name ('P.' Proeteus) for Toarcian 'P.' cingulatus may belong to E. (E.) comeolum and Winnt's (1971) record from the A.alenian and Bajocian of Sicily almost certainly refers to the latter species.
'P.' Renerien Oppel was erected for an unfigured specimen Irom the Bajocian of S. Germany said to generally resemble ' P.' cingulatus but to diller by stronger comarginal ornament. The density of the latter (12 per half inch) is probably too high to suggest that ' P.' Renevieri is an exceptionally early representative of E. (E.) orbiculare and a specimen (GPIT) from the same stage and region, referred to OppFi's species by Staesche (1926), appears to be a form of E. (E.) corneoltom in which growth has been periolically halted, resulting in a regular arrangement of strong growth lines.

[^2]specimens from E. France, is almost certainly referable to E. (E.) corneolitm. It should be noted that Voltz's species (published in 1833) becomes a senior objective synonym of Gold. fuss' species if the latter is taken to include the original of ' P.' sp. Philitps (see above). 1t should be further noted that following the ambiguous statement in Goldfuss many authors (e.g. Quenstedt, 1852; Terquem and Jourdy, 1869; Greco, 1898) have incorrectly ascribed the authorship of 'P.' cingulatus to Phillips (1829).

In the interests of brevity unfigured secondary records of synonymous and probably synonymous species which are of no relevance to Sections $4-10$ are excluded from the synonymy. They may be found in the following works: for ' P.' comeolus, Chanvon (1950); for ' P.' demissus, Bean (1839), Quenstedt (1843), d’Orbigny (1850), v. Sefbach (1864), Se.hlippy (1888), Paris and Richardson (1916), Roman (1926), Barbulfscu (1971); for 'P.'disciformis, v. Buch (1839), Oppel (1858), v. Seebach (1864), Waagen (1867), Deninger (1907), Lanquine (1929), Barbulescu (1961); for 'P.' vitreus, lie Loriol (1894, 1901, 1904), Soholov and Bolulevsky (1931); for ' P.' solidus, id'Orbigny (1850), Ar. kl:11 (1926); for 'P.'spathulatus, Terenem and Jourdy (1869), Barbulescu (1971); for 'P.’ silemzs, Forsich (1971); for 'P.' Gingensis, Deninger (1907), Lanquine (1929); for 'P.' Renevieri, Rullifr (1911), Fursich (1971); for 'P.' Vicoleti, Sinmiradzk! (1893); for 'P.' Valuuryense, DE chasfaux (1936).

5. STRATIGRAPHIC RANGE

The earliest records of E. (E.) comcolum are provided by six specimens (GPIG) from the Toarcian of Esch, Luxembourg which lack a byssal notch, have high H/UA ratios and exhibit the large auricles (Pl. 1, Fig. 25) typical of the species. From the ironstone matrix it is reasonable to conclude that the specimens are derived from the U. Toarcian strata in the area. A specimen (GPIG) from the same horizon at Heiningen, S. Germany has the ovate form more characteristic of E. (E.) corneolum than E. (E.) luthare while two specimens from the U. Toarcian of Somerset (BM L42004, L74597) and a further specimen from undifferentiated Toarcian in Warwickshire (BM 66789) have the high H/UA ratios typical of E. (E.) corneolem. A number of poorly preserved specimens from undifferentiated Lias in S. America (GPIG) have a narrow form highly reminiscent of E. (E.) corneolum. Specimens trom the Toarcian which have poorly preserved auricles and which therefore cannot confidently be assigned to a species are prefixed by a question mark in text flig. 32. Bibliographic records from the Toarcian of species which are considered herein to be synonymous with E. (E.) comeolum are all equivocal (see Section 4). However, it is perhaps worth noting that Dumor. Tifk's (1869) and Bfhmel and Geyer's (1966) citations are of specimens from the Bifrons Zone (L. Toarcian).
E. (E.) comeolum becomes common and locally abundant in the Aalenian and continues thus until the uppermost Jurassic (Trautschold, 1862; de Loriol and Pellat, 1875; Yin, 1931; ?Kilian and Guébhard, 1905). Specimens from the U. Volgian of Moscow (GPIG; Borissiak and Ivanoff, 1917) probably indicate that E. (E.) corneolum survived into the Cretaceous.

Text fig. 36: Entolium (E.) corneolum - European distribution.

6. GEOGRAPHIC RANGE

Unequivocal Toarcian records of E. (E.) corneolum are restricted to Europe (text fig. 36) and the same may also be true in the Aalenian; Wandel's (1936) record from that stage in the E. Indies being of an unfigured specimen which was merely compared with Phillips's synonym ('P.' demissus) of E. (E.) comeolum. Subsequently the species spread to many parts of the world resulting, by the U. Jurassic, in a palacolatitudinal range approaching 100° (text fig. 37). Outside Europe E. (E.) comeolum is, however, only known to be common in the Bajocian of the Andes (Tornquist, 1898) and the Oxfordian/L. Kimmeridgian of E. Greenland (Spath, 1935) and the species is notably absent from the U. S. Western Interior where the reduced diversity fauna, in which Camptonectes is the only common pectinid, is suggestive of high environmental stress (Hallam, 1975a). McLearn's (1924) record of common specimens from undifferentiated Jurassic in Alberta may well be from the Callovian, bearing in mind Frebolu's (1957)
use of McLearn's synonym (E. leachi) of E. (E.) comeolum for specimens from that stage.

7. DESCRIPTION OF ECOLOGY

E. (E.) comeolum first occurs commonly in the chamosite oolites of the Northampton Sand Ironstone (Aalenian: Opalinum zone) where it reaches a maximum height of 53 mm (author's collection) and is associated with a diverse bivalve fauna (see p. 26) including Propeamussium (P.) pumilum but lacking P. (P.) lacviradiatam. In a similar sedimentary and faunal association in the Murchisonae zone of S. Germany E. (E.) comeolum is abundant and reaches a maximum height of 58 mm (GPIT) while in the Aalenian of Lorraine the species is common in chamosite oolites of the Opalinum zone and reaches a maximum height of 90 mm (NM) in ironshot sediments probably of the Concavum zone. E. (E.) comeoltum occurs in a variety of limestones (including

Text fig. 37: Entolium (E.) corneolum - World distribution (Cailovian reconstruction).
those bearing corals [Channon, 1950]) in the Aalenian of the Cotswolds (reaching a maximum height of 49 mm [OUM J34471]) and near Yeovil it occurs commonly in ironshot oolites. In similar sediments in Provence E. (E.) corneolum reaches a maximum height of 74 mm (LaNpuine, 1929).

In the L. Bajocian of S. Germany E. (E.) corneolum attains a maximum height of 40.5 mm (GPIT) and is particularly abundant in the Blaukalke, a sandy limestone (Staesche, 1926). Specimens from the Sowerbyi-Banke which are referable to the possibly synonymous species ' P.' Gingensis Quev. STEDT (see Section 4) attain a maximum height of 87 mm (GPIT) but specimens which are definitely referable to E. (E.) corneolum attain a maximum height of 90 mm (YM 531) in the contemporaneous Millepore Bed, a sideritic sandstone in Yorkshire (fauna p. 123). Only one specimen (GPIG) is known from the relatively restricted fauna (indicative of lower environmental stability) in the somewhat later Scarborough Beds of the same area. In the L. Bajocian of E . France E. (E.) comeoltm occurs quite frequently in inter-reef biosparites and biomicrites (Hallam, 1975 b).

In the U. Bajocian of S . Germany the species is reported to be abundant (Staesche, 1926) and reaches a maximum height of 41 mm (GPIT). tt is also common in condensed ironshot oolites in Normandy while contemporaneous specimens from limestones in the Cotswolds are common and attain a maximum height of 71 mm (BM LL15). The species is reported to be common in Bajocian dolomitised oolites in the Maritime Alps (Kilian and Guuebhart, 1905).

Records of common L. Bathonian specimens of E (E.) corneolim are restricted to the Mâconnais (Lissajous, 1923) and the species is not known to be common again until the uppermost Bathonian (Discus zone) when it is found in the shell fragment limestones of the L. Cornbrash in England (fauna p. 128), attaining a maximum height of 55 mm (OUM J7135). All the specimens cited by Cox and Arffll (1948) from the marginal marine facies of the Bathonian in central England appear to be representatives of Camptonectes (M. J. Bradshalw, pers. comm., 1977) and the majority of Bathonian records of E. (E.) corneolum are in fact concentrated in central and southern Europe (text figs. 36, 37).

In the L. Callovian (Macrocephalus zone) E. (E.) corneolum is abundant in the chamosite oolith-bearing limestones of the U . Cornbrash in Yorkshire and attains a maximum height of 55 mm (SbM H 73.4). In the immediately overlying Shales of the Cornbrash the species is reported to be abundant (J. Wright, 1977) but all specimens discovered by the author have been small $(\mathrm{H}:<30)$. In the same area similar specimens ($\mathrm{H}_{\text {max }}: 36.5 ; \mathrm{BM} 47433$) are fairly common in the low diversity benthic fauna (see p. 208) of sandstones forming the Kellaways Rock (Calloviense zone) and chamosite wolites forming the Hackness Rock (U. Callovian; Athleta and Lamberti zones) both of which were probably deposited very near shore (J. Wright, 1978). Small specimens also occur in the more basinal non-bituminous shales of the L. and M. Callovian in E. Scotland and U. Callovian of E. England (Duff, 1978). However, in the predominantly bituminous shales of the L. and M. Callovian in the latter arca E. (E.) corneolum is not only small hut is restricted to a subordinate role in shell beds which contain, in comparison to contiguous de-
posits, a relatively high proportion of suspension feeding bivalves (Duff, 1975). Kilian and Guébhard (1905) report the species as common in thin-bedded limestones containing numerous suspension feeding bivalves in the Callovian of S. France while Lewinski (1908) reports common examples in marls of the same age in Poland.

R(OFDER (1882) reports common E. (E.) corneolum in the L. Oxfordian 'Terrain à Chailles' of Alsace (fauna pp. 88, 208) and Peron's (1905) record of common Oxfordian specimens from the same area may well be from this horizon rather than the coral-bearing limestones of the U. Oxfordian. However, the latter facies seems to support fairly common E. (E.) corncolum in the Swiss Jura (DE LORIOL, 1893) where the species reaches a maximum height of 77 mm (DE Loriol, 1895). Similar sediments in the Oxfordian of N. Germany (Roemer, 1836) and England (Arkell, 1930a; Bruohfield, 1978) also contain E. (E.) corneolum up to a maximum height of 80 mm (YM 560). However the species is not particularly common, forming no part of the trophic nuclei of any of Fursich's (1977) faunal associations, and according to Arbell (1928) it is largely restricted to inter-reef biosparites. Specimens from Oxfordian marls and biomicrites in S . Germany reach a maximum height of only 21 mm (GPIT) but if Nitzopoulos' (1974) information is taken to refer to E. (E.) comeolum (see Section 4) the species is fairly common in an orherwise sparse benthic fauna. In similar sediments in the Kimmeridgian of the same area E. (E.) corneoltm attains a maximum height of 28.5 mm (GPIT) but here, as in other occurrences in the stage, there is no evidence of anything more than a few specimens although the species is widespread (text fig. 36). An isolated specimen from unknown facies in Russia has a height of 45 mm (BM L+170). E. (E.) corneolum is absent from Oxfordian sands in Normandy, (Chavan, 1952), together with Kimmeridgian marls in N. W. Germany (Huckrifde, 1967) and limestones in Poland (Alth, 1882) where the presence of euryhaline bivalve genera and paucity of ammonites is suggestive of abnormal salinities. By contrast, in the L. Tithonian ammonite-bearing marly limestones of the last area E. (E.) corneolitm is very common (Lewwivski, 1923). In the M. Tithonian (Pectinatus zone) near Oxford E. (E.) corncolum is also very common, reaching a maximum height of 57 mm (OUM J14519). Many specimens have somewhat low H/UA ratios as in the co-occurring Camptonectes (C.) autritus. E. (E.) corneolum occurs with E. (E.) orbiculare in the U. Jurassic of Moscow (GPIG) and Spitzbergen (Sokolov and Bodylevsky, 1931).

The wide variety of sediments in which E. (E.) corneolum is found in large numbers, of which all known European examples are described above, is also occupied by somewhat fewer individuals at many other horizons in the M . and U . Jurassic. However, the low diversity faunas of basinal argillaceous sediments in the peri-Mediterranean region do not appear to contain E. (E.) corneoltim except possibly in the U. Jurassic of E. Spain where Behmel (1970) records as the most common fossil the questionably synony mous species E. cingulatum (see Section 4). All other records from the region are either from faunally rich neritic facies or from somewhat reduced diversity, condensed, fine-grained swell facies where the species seems to be small in size (e. g. Borto-Mıcca, 1893).

8. INTERPRETATION OF ECOLOGY

If assessed in terms of its abundance it is clear from Section 7 that E. (E.) corneolum was a remarkably eurytopic species with respect to substrate. Certain clay-grade sequences where the low density and diversity of other suspension feeding bivalves is indicative of high turbidity or soupy substrates seem to have constituted the only unfavourable environments and even these E. $(E$.$) corneolum may have been able to col-$ onise in large numbers locally. However, if assessed in terns of its size it is clear that expanded sequences of argillaceous sediments did not provide the most suitable substrates for E. (E.) corneolum, individuals from such facies being always smaller than those from contemporaneous deposits of arenaceous grade. In the latter the large size of specimens from sequences where the precipitation of siderite and chamosite is indicative of slow sedimentation suggests that the development of firm substrates and low turbidity was conducive to rapid growth and the attainment of large size. Further support for the importance of the last factor is provided by the occurrence of large specimens in arenaceous sediments close to coral reefs, the growth of which is inhibited by high turbidity. The high environmental energy associated with arenaceous sedimentation was, by the evidence of the reduced size of specimens from expanded compared to contemporaneous condensed sequences, apparently insufficient on its own to promote rapid growth. In fact, the relatively reduced H/UA of specimens from an expanded sand sequence in the M. Tithonian suggests that growth was actively retarded in such sequences. In the lack of any M. Tithonian occurrences of E. (E.) corneolum from condensed facies, it is impossible to rule out the possibility that the H/UA decrease is a phyletic effect (see Section 10). However, the parallel change in the ecologically distinct but co-occurring Camptonectes (C.) atiritus argues strongly for stunting. The relative abundance of medium to small specimens in this and other expanded arenaceous and argillaceous sequences need not be viewed as evidence against stunting (see p. 124 and Hallam, 1965).
In contrast to its considerable substrate eurytopy E. (E.) comeolum seems to have been unable to tolerate environments where the low faunal diversity is indicative of abnormal salinity or the more general instability of marginal marine situations. Sequences which were largely deposited under conditions of reduced oxygen tension were only colonised, and then rarely, at horizons where the development of shell beds suggests a brief replacement of stagnant by more acitve and oxygenated conditions.
There is no evidence for any competitive reaction with the morphologically very similar species E. (E.) orbiculare, nor with Propeamussium (P.) pumilum and P. (P.) nonarium. However E. (E.) comeolum is very rarely found with P. (P.) laeviradiatum despite the favourability for the former species of the condensed facies to which the latter is restricted. It seems likely that a similar mode of life (see Section 9) may have led to mutual competitive exclusion.

Very close Recent morphological analogues of E. (E.) corneolum are described on p. 45).

9. FUNCTIONAL MORPHOLOGY

Apart from the absence of a byssal notch E. (E.) corneolum is in all relevant aspects of morphology identical to E. (E.) lu-
nare. A similar mode of life, differing only by the lack of a byssate juvenile phase, can therefore be inferred (see p. 45). E. (E.) comeolum has a lower rate of increase in umbonal angle so swimming ability may have been somewhat impaired at large sizes. The small maximum size of individuals colonising soft argillaceous substrates is adaptive in that it minimises sinking into the substrate. Stunting, with its implication of inadaptiveness, may therefore be an inappropriate term to apply to the development of small size in such environments (see Section 8).

10. ORIGINS AND EVOLUTION

E. (E.) lunare is the only known candidate for the ancestor of E. (E.) comeolum in the Jurassic. All the differences displayed by the latter species can be explained by the heterochronic alteration of the ontogeny of the former. However, simultaneous retardation (for $\mathrm{H} / \mathrm{L}, \mathrm{I}_{\mathrm{R}} / \mathrm{L}, \mathrm{HAA} / \mathrm{L}$ and AH / L) and acceleration (for H/UA and the lack of a byssal notch) of the development of the components of shape with respect to size would have to be invoked and it is by no means certain whether such a situation could arise in a single speciation event. It may be that an as yet undetected species is the direct ancestor of E. (E.) corneolum.

The undoubted existence of ecophenotypic variation in size and the lack of adequate collections from any one facies throughout the stratigraphic range of E. (E.) corneolum makes for great difficulty in assessing phyletic changes in size. Specimens lumped together from all arenaceous facies exhibit an overall, albeit oscillatory, decrease in size from 90 mm (Aalenian) to 90 mm (L. Bajocian) to 71 mm (U. Bajocian) to 55 mm (U. Bathonian) to 55 mm (L. Callovian) to 80 mm (Oxfordian) to 57 mm (M. Tithonian) and this is corroborated, for at least part of the stratigraphic range, by a consistent reduction in size in condensed arenaceous facies from the Aalenian to the L. Bajocian to the L. Callovian (values as above). The reduced H/UA observed in some M. Tithonian specimens may not extend to other populations and so cannot definitely be considered as a phyletic effect, especially in the light of a plaubsible alternative explanation in terms of reduced growth rate (see Section 8).

Entolium (Entolium) orbiculare (J. Sowerby 1817)
Pl. 1, Fig. 19; text figs. 38-42
Synonymy
1817 Pecten orbicularis sp. nov; J. Sowerby, p. 193, pl. 86.
? 1829 Pecten sp; Phillips, pl. 5, fig. 11.
pv? 1836 Pecten cingulatus sp. nov; GoLDFUSS, p. 74, pl. 99, figs. 3a, 3b.
? 1837 Pecten concentricus sp. nov; Koch and Duviner. p. 43, pl. 5, fig. S.
v"? 1840b Pecten partitus sp. nov; J. DE C. Sowerbr, p. 328, pl. 22, figs. 5, 5a.
1843 Pecten nummularis sp. nov; G. Fischer, p. 135, pl. 5, fig. 4.
(?) 1850 Pecten partitus J. De C. Sowerby, d'Orbigny, v. 1, p. 342.

1850 Pecten nummularzs G. Fischer; d'Orbigny. v. I, p. 373.

v non 1852	Pecten cingulatus Gonifuss; Quens pl. 40, fig. 41.
non 1864	Pecter concentrichs KOCH and Dunker; v. See BACH, p. 100.
? 1866	Pecten demussus Phillips; Lindstrom, p. 14, pl. 3. figs. 9, 10 (non Phillips sp.).
non 1869	Pecten cingulaths Goldruss; Terquem and Jourdy, p. 127.
? 1874	Pectern polylasmates sp. nov; GFMmFllaro and DI Blasi, p. 137, pl. 3, fig. 18.
? 1876	Pecten Palatensis sp. nor; Favki, p. 65, pl. 7, fig. 3.
? 1881	Pecter vitreus Rofmir; de Loriol, p. 93, pl. 13, figs. 3-5 (non Rofmfr ¢p.).
? 1883	Pectendemissus Pimlups; Lundgrfn, p. 16, pl. 2, fig. 12 (non Phillips sp.).
(?) 1885	Pecten (Ambsium) Pelatensis Favre; Nicolis and Parona, p. 45.
non 1891	Pecten concentricus Koch and Dunker; Behrendsen, p. 416.
? 1893	Pecten (Entolium) theodosianus sp. nov; RET Owskl, p. 283. pl. 14, lig. 23.
1893	Pectera (Entolutm) erraticus sp. nov; Fiebeliorn, p. $400, \mathrm{pl} .14$, fig. 12.
non 1893	Pecten (Entoham) cingulatus Goldruss: Botto. Micca, p. 174.
? 1895	Pecten Sterurtianus sp. nov; Lundgren, p. 198, pl. 3, fig. 12.
non 1898	Pecten (Entolium) angulatas Golimfuss; GrFCO, p. 109, pl. 8. figs. 30, 31.
1908	Pecten (Entolium) gothicies sp. nov; Krause. p. 256, pl. 4, figs. 6, 7.
$? 1910$	Pecten (Entolinm) cingulaths Goldfuss; Ravn, p. 464, pl. 33, Fig. 7.
1910	Pecten erraticus †il-belororn; Ravn, p. 464.
? 1911	Pecten (Entolitim) cingulatus Goldfuss: Rul L.IFR, p. 263.
? 1912	Chlanys (Syncyclonema) Briconensis Cossmann; Cossmann, p. 3, pl. 1, fig. 20.
? 1917	Pecten vitrens Rofmer, Borissiak and ivanolf, p. 8, pl. 1, fig. 4 (non figs. 1, 2, 12, 16; non ROEMFR sp.).
? 1923	Syncyclonemar masticonense sp. nov: Lissajous, p. 166, pl. 30, fig. 6 .
? 1926	Entolium congulatiom (Goldruss); Staesche. p. 93 , pl. 4, figs. 3, 4.
? 1926	Entolium aff. solido (Roemier): Staesche, p. 103, pl. 3, figs. 13-15 (non Rofmer sp.).
1931	Pecten (Entolium) nummularis G. FISCHER; Sokolov and Bolyt fvehy, p. 51, pl. 8, fig. 1.
non 1936	Entolium cingulatus (Gordides); DFChasfauk, p. 60.
(?) 1936	Entolum masticonense (Lişajous); Dechas. faux, p. 63.
1936	Entolum numbularis (G. Fischer); Spath, p. 103, pl. 41, figs. 9, 10a-c, pl. 42, figs. 11a, 11 b.
non 1951	Entolium cingulatum (Golmuss); Troedsson, p. 217, pl. 20, figs. 1-3, pl. 21, figs. 11, 12.
? 1952	Entotum partatum (J. De C. Suwerby); Cox, p. 35, pl. 3, figs. 11-13.
non 1961	Entolum cingulathm (GOLDFUSS); Barbuifscu, P. 702.
non 1964	Entolum cingulatum (GOLDFUSs); W'EllNHOFER, p. 35, pl. 1, figs. 28-30.
? 1965	Entolum briconense (Cossmann): Cox, p. 5t, pl. 6, tig. 6.
? 1965	Entolum cungulatum (GOLDFLSS); COX, p. 52, pl. 6, fig. 5.
1966	Entolium numbulare (G. FISCHER); ZakHAROV, p. 35, pl. 5, fig. 3, pl. 6, figs. 2-6.
? 1970	Entolium cingulatum (GOLDFUSS); BfHMEL, p. 62.
1971	Entolum (Entoliam) orbicalare (J. SOWERBY) Dhenimi, p. \& pl. I, ligs, Ia, Ib.

non 1971
? 1971 Entolum cf. cingulatum (GOLDFUSs); WENDT, p. 160.
? 1972 Entolium sp. aff. partutum (J. DE C. SOWERBY); Hayami, p. 199, pl. 34, fig. 9.
1974 Entolium nummulare (G. Fischir); ZaKharoy and Meseznikov, p. 140.
? 1974 Entolium cingulatum (GOLDFUSS): NitzopouLOS, p. 46.
1977 Entolium (Entolium) orbiculare (J. SOWerBy); Kelly, p. 66. pl. 4, figs. 1-10.
? 1978 Eutolium sp. A; DuFF, p. 64, pl. 5, figs. 7-10, 12, 13, 17.

The holotype (M) of Pecten orbicularis J. Sowerby 1817, p. 193 , pl. S6 has not been located in the Sowerby Collection at the BM and is probably lost. It was derived from the U. Greensand (Albian) of Devizes, Wiltshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Orbicular, much depressed, concentrically' striated; striae elevated, sharp; one valve smooth; ears nearly equal, broadest at the base.

A thin tender shell; the striae are many, a line distant from each other; the length and breadth are equal; the ears rather large.

One of the tender products of the green sand of the Devizes canal, preserved by Mrs. Gfnt. It appears to be infrequent, as I have seen but one individual..

2. AMENDED DIAGNOSIS

Distinguished from $E .(E$.$) comeolum and E$. (E.) lunare by the presence of regular comarginal grooves on the right valve.

Text fig. 38: Entolium (E.) orbiculave - height/length.

3. AMENDED DESCRIPTION

Essentially very similar to E. (E.) corncolum. Differing only by the diagnostic comarginal grooves (see Section 2) which are situated at intervals of between 1 and 4 mm (Kelly, 1977), by the smaller maximum height (54 mm ; IGS R. 27/06) and by the somewhat lower mean H/L, H/UA and 1/L (text figs. 38-40).

Text fig. 39: Entoluton (E.) orbiculare - intersinal distance/length.

4. DISCUSSION

The earliest specific name erected for the species described in Section 3, 'Pecten' orbicularis J. Sowerby, was founded on a Cretaceous specimen and most subsequent records of J. Sowerby's species have been from that period. For
synonymy lists of Cretaceous E. (E.) orbiculare and synonymous species, reference should be made to Dhondt (1971) and Kelly (1977).

The figure of ' P.' nummalaris G. Fischer depicts a shell which lacks the comarginal grooves diagnostic of E. (E.) orbicularc. However, the description specifies such ornament thus the figure probably illustrates the smooth left valve of the latter species. Only Jurassic records of G. Fischer's species are included in the synonymy. Cretaceous records may be traced through Dhondt (1971) and Kelly (1977). It should be noted that some subsequent authors (e. g. D'Orbigny, 1850; Zakharov, 1966) have attributed 'P.' nummularis incorrectly to Phillips while Sokolov and Bodylevsky (1931) have attributed the name to d'Orbigny.

The figure of ' P.' concentrichs KOCH and Dunker, from the Kimmeridgian/Tithonian of N . Germany, depicts a specimen lacking a byssal notch and with strong comarginal ornament as in E. (E.) orbiculare. However, H/L and H/UA (1) are extremely high and although this could be due to bad drawing, the fact that v. Seebach (1864) and Behrendsen (1891), both of whom may well have examined the type material, have attributed specimens with radial ornament to ' P.' concentricus, suggests that Koch and Dunker's figure is more probably of a left valve of Camptonectes (Camptochlamys) obscunzs.
J. de C. Sowfrby's (1840b) figures of ' P.' partiturs from the probable Callovian (Cox, 1952) of Cutch (India) reveal quite strong comarginal ornament, as in the right valve of E. (E.) orbiculare. However, the syntypes (BM R. 9960) do not exhibit such ornament and although one has I/L (2) within the range of E. (E.) orbiculare they are too poorly preserved to be specifically determinate. Cox (1952) has figured topotype specimens which show comarginal grooves similar in form to those of E. (E.) orbiculare but the apparent lack of smooth valves suggests that they comprise both right and left valves of a species which, unlike $E .(E$.$) orbictulare, is comarginally or-$ namented on both valves (cf. 'Syncyclonema' masticonense

Text fig. 40: Entolium (E.) orbiculare - height/umbonal angle.
below). Hayam's (1972) record of a form from the Toarcian of Vietnam having affinities with J. de C. Sowr rby's species is based on a specimen which is too poorly preserved to be specifically determinate.
'P.'polylasmites Gemmfllaro and di Blasi from the Tithonian of Sicily was founded on two specimens with regular comarginal ornament and no byssal notch. Both were said to be left valves but if this is the case the figure indicates that PH must be greater than AH , a situation unknown in other pectinids. It seems much more likely that the specimens are right valves which are thus very similar in ornament to the corresponding valve of E.(E.) orbiculare. Metric proportions (3) are indistinguishable.
'P.' (E.) theodosianus Retowsit from the Tithonian of the Crimea is reported to be known only from left valves thus the strong comarginal ornament of the figured specimen cannot indicate any relationship with E. (E.) orbicularc. However, since Retowski states that a byssal notch is absent in his species right valves must have been available and it is thus possible that the comarginal ornament is limited to these specimens as in E. (E.) orbiculare. Nevertheless, H/UA (4) of the figure is somewhat low for the latter species.
'P.' (E.) crraticus Fieblekorv and 'P.' (E.) gothicus Krausr from the German Kimmeridgian both have the comarginally grooved right valve of E. (E.) orbiculare. 1/L (5) of the figure of the former is somewhat high but this could be due to inaccurate reproduction. H/L and H/UA are indistinguishable from E. (E.) orbiculare.

The figure of 'Chlamys' ('Syncyclonema') Briconensis Cossmann: Cossmann (1912) from the Callovian of France reveals strong comarginal ornament, as in the right valve of E. (E.) orbiculare, but the description specifies unequal auricles, which may serve to differentiate the species. Unfortunately the degree of auricle asymmetry cannot be assessed because of the poor preservation of the figured specimen. Cox's (1965) record of Cossmann's species from the same horizon in E. Africa is based on a similarly poorly preserved specimen. Cors mann's original description and figure (1907c) has proved im-
possible to trace. The auricles of ' S.' masticonense Lissajous, a species from the U. Bajocian and L. Bathonian of France which was compared with Cossmanv's species, are somewhat better preserved and seem to be entolioid in form. The comarginal ornament of the right valve is indistinguishable from that of E. (E.) orbicture but that of the left valve, said to consist of lametlose comarginal striae, may serve to differentiate the species.

The questionably synonymous species ' P.' cingulatus Goldiuss (and secondary references thereto) is discussed under E. (E.) corneolum.

The remaining questionable references listed in synonymy are discussed under E. (E.) comeolum (for Favre, 1876; de Loriol, 1881; Staesche, 1926) and E. (E.) lunare (for Phillips, 1829; Lindstron, 1866; Lundgren, 1883, 1895; BorisSIAK and Ivanoff, 1917; Duff, 1978).

5. STRATIGRAPHIC RANGE

Kelly (1977) states that specimens from the Kimmeridgian (e. g. IGS Y1624, Y1625; GPIG; MNR; Fiebelkorn, 1893: Krausf, 1908; Sokolon and Bodylevsky, 1931; Zakharov, 1966, 1974) constitute the earliest records of E. (E.) orbiculare. In fact, Sokolov and Bodylevshy (1931) record the species from the Oxfordian of Spitzbergen, d'Orbigny (1850) records it from the Oxfordian of various localities in France and Russia and univalved comarginally grooved museum specimens from the same stage in England (BM L66462), Germany (GP1G) and France (MNS) probably constitute further records of the species. Bibliographic records in Phil. lips (1829), Fayre (1866), Nicolis and Parona (1885), Rol. lifr (1911), Stafsche (1926), Behmfl (1970), Wendt (1971) and Nitzopoulos (1974) may also refer to Oxfordian examples of E. (E.) orbiculare (see Section 4). Earlier records (in the Callovian: J. de C. Sowerby, 1840; d'Orbigny, 1850; Cossmann, 1912; Cox, 1952, 1965; Duff, 1978; in the Bajocian and Bathonian: Lissajous, 1923; Dechaseaux, 1936; in the Toarcian: Hayami, 1972) are restricted to questionably

Text fig. 41: Entolum (E.) orbiculare - European distribution.

Text fig. 42: Entolium (E.) orbiculare - World distribution (Tithonian reconstruction).
synonymous species and until pre-Oxfordian bivalved specimens with smooth left valves and comarginally ornamented right valves are discovered it is probably best to say that the first appearance of E. (E.) orbiculare is in the U. Jurassic. It is possible that another species with comarginal grooves on both valves may have existed in the M. Jurassic (see Section 4).

In the Oxfordian and Kimmeridgian E. (E.) orbiculare is only known to be common in Spitzbergen (Sokolov and Bodylevsky, 1931). Subsequently in the Jurassic it is not known to be common anywhere. Kell (1977) reports the species as abundant in the M. Volgian ($\simeq \mathrm{M}$. Tithonian) to Ryazanian (Cretaceous) of E. England and Dhondt (1971) states that E. (E.) orbiculare is known until the Turonian.

6. GEOGRAPHIC RANGE

The distribution of E. (E.) orbiculare in the Jurassic is distinctly Boreal with no certain records south of a palaeolatitude of about $25^{\circ} \mathrm{N}$ (text figs. 41, 42).

7. DESCRIPTION OF ECOLOGY

In Spitzbergen, Sokolov and Bodylevsky (1931) record common E. (E.) orbiculare in association with E. (E.) corneolum in U. Oxfordian to L. Kimmeridgian black shales. In E. Greenland Spath (1936) records E. (E.) orbiculare with a height of 42.5 mm from U . Tithonian ('Portlandian') glauconite sands and similar sediments are probably the source of a number of specimens from the L. Volgian ($\simeq \mathrm{L}$. Tithonian) of the Moscow area where E. (E.) comeolum also occurs. According to Kelly (1977) the same sedimentary facies is dominated by E. (E.) orbiculare in the Spilsby and Sandringham Sands (M. Volgian to Ryazanian) of E. England. Current aligned specimens in the stable, convex up, position constitute between 51 and 57% of the total fauna. In the remainder, the deep burrowing bivalves Pleuromya and Pholadomya are quite common elements. In finer grained sands whose fauna
contains a higher proportion of byssate and cemented bivalves indicating deposition under lower energy conditions, E. (E.) orbiculare constitutes only 28% of the total fauna. The maximum height attained in the sequence is 55 mm (IGS R27/06).

8. INTERPRETATION OF ECOLOGY

The variations in abundance of E. (E.) orbiculare in the Spilsby and Sandringham Sands suggest that the species favoured high energy environments. However, the relatively greater abundance in coarse, high energy sands could merely be due to post-mortem winnowing out of small elements of the fauna to leave concentrations of E. (E.) orbiculare in such sediments. By adopting a view that the species was, in fact, eurytopic with respect to environmental energy the otherwise anomalous occurrence of E. (E.) orbiculare in black shales in Spitzbergen is reasonably explained.

There is no evidence of any competitive reaction between E. (E.) orbiculare and E. (E.) corneolum.

9. FUNCTIONAL MORPHOLOGY

Since E. (E.) orbiculare is in all important aspects of morphology identical to E. (E.) corneolum a similar reclining/swimming mode of life can be inferred. The development of pronounced comarginal ornament on the right valve exterior represents, at least in the high energy environments occupied by the species (see Section 8), an improved adaptation for reclining since it increases purchase on the substrate and thereby promotes stability.

10. ORIGINS AND EVOLUTION

The most obvious ancestor for E. (E.) orbiculare is E. (E.) comeolum. However, it should be borne in mind that a second species, morphologically very similar to E. (E.) orbiculatre, may have existed in the M. Jurassic (see Section 4) and
been a more direct ancestor of E. (E.) orbiculare. Except for H / L, the slight differences in the metric proportions of E. (E.) orbiculare in comparison with E. (E.) comeolum (see Section 3) cannot be explained by heterochrony as the latter species displays little allometry in the relevant features.

The available data on maximum height (42.5 mm : 'Portlandian', 54 mm : M. Volgian-Ryazanian) is not sufficiently localised in a stratigraphic sense to allow any assessment ol possible phyletic changes.

Genus PSEUDOPECTEN Barle 1878

Type species, M; Bayli 1878, pl. 21, fig. 1; Pecten equivalvis J. Sowerby 1816, p. 83, pl. 136, fig. 1; U. Pliensbachian, Avallon, E. Paris Basin.

AMENDED DIAGNOSIS

Nearly equivalve to clearly inequivalve; between 12 and 27 radial plicae which are nearly smooth or with spines on RV. L. Jur.-M. Jur., Eu., N. and S. Am., E. Indies.

DISCUSSION

In his diagnosis Hertiriv (1969: N372) stated that Pseudopecten was nearly equivalve; Ps. (Ecbinopecten) barbatus is, however, distinctly inequivalve. Hertifin stated that about 15 or 16 plicae were present; text fig. 43 shows that there is at least a range between 12 and 27 plicae. Hertlein excluded N . America from the geographic range; the latter continent can now be included on the basis of the results of work presented herein.

Subgenus PSEUDOPECTEN s. s.

AMENDED DIAGNOSIS

Plicae on right valve smooth or some with spines; nearly equivalve. L. Jur.-M. Jur. (Hettang.-Bajoc.), Eu., N. Afr., N. and S. Am.

DISCUSSION

Hfrtlfin (1969: N372) omitted any reference to convexity in his diagnosis, which consequently does not exclude Ps. (Echinopecten). He erroneously limited the stratigraphic range to Sinemurian - Domerian and the geographic range to Europe.

Within Ps. (Pseudopecten) two groups may be distinguished by the presence or absence of high, vertically striated disc flanks and comarginal striae which tongue down the sulci. Forms possessing these features usually have between 16 and 20 plicae (text fig. 43). However 2 specimens with 13 plicae are known to possess these features and it seems extremely likely that forms with between 12 and 15 plicae, most of which are poorly preserved, also possessed them originally. This group has a bimodal plical frequency distribution with peaks at 14 and $17 / 18$ plicae. Such a distribution is herein considered to be indicative of two species named, respectively, Ps. (Ps.) veyrasensis and Ps. (Ps.) dentatus. However, the possibility cannot be entirely discounted that it is indicative of a single polymorphic species. Apart from the number of plicae, forms with between 12 and 15 plicae are virtually indistinguishable from those with between 16 and 20 plicae. However, in spite of close ecological similarities the two groups are not congruent stratigraphically (see pp. 79, 75) and this is most easily interpreted as the result of a specific difference in the absence of more positive proof for polymorphism.

Text fig. 43: Pseudopecten (Pseudopecten) - frequency distribuion for number of plicae.

Forms without high, vertically striated disc flanks and comarginal striae which tongue down the sulci have between 16 and 27 plicae (mode 22) and are herein referred to P_{5}. ($P_{\text {s. }}$) equivalvis. Differences in size, umbonal angle and angularity of the plicae in forms referred to this species can be confidently ascribed to ontogenetic and ecophenotypic variation (see pp. 64, 71).

Pseudopecten (Pseudopecten) equivalvis (J. Sowerby 1816) Pl. 2, Figs. 1, 2, 4-10, ?Fig. 3; text figs. 44-58

Synonymy

v 1816 Pecten equivalvis sp. nov; J. Sowerby, p. 83. pl. 136, fig. 1.
1819 Pecten acuticosta sp. nov; LAMARCK, p. 180.
? 1820 Pectinites priscrs sp. nov; SCHLOTHEIM, p. 222.
1828 Pecten sublaevis sp. nov; Young and Bird, p. 234, pl. 9, figs. 9, 10.
1828 Pecten major sp, nov; Young and Bird, p. 235.
1833 Pecten achticostatus Lamarck; V. Zieten, p. 70, pl. 53, figs. 6a, 6 b .
1833 Pecter aequivalvis J. Sowerby; v. Zieten, p. 68. pl. 52, figs. 4a, 4b.
1833 Pecten costatulus sp. now; Hartmann in V. Zie. TEN, p. 6S, pl. 52, figs. 3a, 3b.
v 1833 Pecten aequivalits J. Sowfrby; Goldfuss, p. 43, pl. 89, fig. 4.
v non 1833 Pecter priscus Schlotheim; Goldfuss, p. 43, pl. 89, fig. 5.
v 1833 Pecten acutiradiaths sp. nov: MUNSTER in Gold. FUSS, p. 44, pl. 89, figs. 6a-c.
1836 Pecten aequivalvis J. Sowerby; Roemer, p. 67.
1836 Pecten acuticosta sp. nov; ROEMFR, p. 68.
? 1838 Pecten lugdunensis sp. nov; Michliun in 1.I. Merie, pl. 24, fig. 5.
v 1850 Pecten aequivalvis J. Sowerby; D'Orbigny, v. 1, p. 237.
v 1850 Pecten priscus Schlotheim; d'Orbigny, v. 1 , p. 238.
v 1850 Pecten cephus sp. nov; D'Orbigny, v. 1, p. 238.
v 1850 Pecten acuticosta Lamarck; d'Orbigny, v. 1, p. 257.

1850 Pecten acutiradiatus Munster; D'Orbigny, v. 1, p. 257.

1851 Pecterl achtlradiatus Munster; Schafhautl. p. 410.

1852 Pecten achiticosta Lamarck; Verneull and Col LOMB, p. 112.
1852 Pecterr aequivalvis J. Sowerby; Bronn, p. 208, pl. 19, fig. 4.
1852 Pecten priscus SChlotheim; Quenstedt, p. 507, pl. 40, fig. 42.
1853 Pectenacuticosta LAMARCk; Chapuls and DEWAL QUE, p. 211, pl. 31, figs. 3a-c.
1853 Pectert aequivalvis J. Sowerby; Chapuis and De. W'AlQUE, p. 212, pl. 32, fig. 1.
1853 Pecten aequivalvis J. SOWFRBY; OpPEL, p. 77, pl. 4, fig. 11.
1853 Pecten priscus Schlotheim; Oppel, p. 78, pl. 4. fig. 10.
1858 Pecten aequivalvis J. Sowerby: Oppel, p. 181.
1858 Pecten sublaevis Ioung and Bird; Oppel, p. 181.
1858 Pecten priscus SChlotheim; Oprei, p. 181.

- 1858 Pecten aequalis sp. nov; Quenstedt, p. 78, pl. 9, fig. 13.
1858 Pecten aequivalvis J. Sowerbri; Quenstedt, p. 183, pl. 23, fig. 1.

1860 Pecten aequivalvis J. SOWERBY; COQUAND, p. 62.
1863 Pecten priscus SCHLOTHEIm; SChlonbach, p. 542.

1865 Pecten aequalis Quenstedt; Terquem and Piette, p. 102, pl. 12, figs. 15-19.
1867 Pecten acuturadiatus MUNSTER; DUMORTIER, pp. 72, 217, pl. 48, figs. 5, 6.
non 1867 Pecten priscus Schiothetm; Dumortier, p. 216, pl. 48, fig. 4.
1869 Pecten acutradiatus MUNSTER; DUMORTIER, p. 135, pl. 21, fig. 8 .

1869 Pecten acuticostatus LAmARCK; DUMORTIER, p. 136, pl. 21, fig. 7, p. 305 , pl. 39, fig. 3.

1869 Pecten priscus Schlotheim; Dumortier, p. 138. pl. 22, fig. 3.
1869 Pecten aequivalvis J. Sowerby; Dumortier, p. 298, pl. 42, figs. 16. 17.

1871 Pecten prischs Schlotheim; Brauns, p. 390.
1871 Pecters aequivalvis J. Sowerby; Brr.Uns. p. 391
1872 Pecter aequiralvis J. Sowerby; Tietze, p. 106.
1872 Pecten Hinterbuberi sp. nov; TIETZE, p. 107. pl. 3, fig. 4.
1876 Pccten aequalis Quenstedt; Tate and Blake, p. 363.

1876 Pecten aequivalurs J. Sowerby; Tate and Blake. p. 363.

1876 Pecten priscis Schlothfim; Tate and Blake, p. 364.

1878 Pseudopecten aequtuduts (J. SOWERBY); BAYLE. pl. 121, fig. 1.
1881 Pecten Caracolensis sp. nov; Steinmann, p. 254, pl. 14, fig. 10.
1884 Pecten acuticostatus Lamarck; Uhlig, p. 179.
1884 Pecten cf. aequivalvis J. Sowerby; Uhlig, p. 179
1884 Pecten major Young and Bird; Simpson, p. 165.
1884 Pecten sublaevis Young and Bird; Simpson, p. 165.

1884 Pccten interstinctus sp. nov; SimpSon, p. 169.
1884 Pecten rudis sp. nov; Simpson, p. 169.
1884 Pecten dichotomus sp. nov; Simpson, p. 169.
1886 Pecten aequivalvis J. Sowerby; Winkler, p. 30.
1888 Pecten priscus Schlotheim; Moberg, p. 34, pl. 1, fig. 26.
Pecten Norigliensis sp. nov; TAusCH, p. 13, pl. 7 , fig. 8.
? 1891 Pecten Bodenberider sp. nov; BEHRENDSEN, p. 391, pl. 22, fig. 3.
? 1895 Pecten Jobnstrupi sp. nov; Lundgren, p. 199. pl. 3, figs. 13a, 13b.
1897 Pecten priscus SChlotheim; Pompeckj, pp. 773. 776.

1897 Pecten aequivalvis J. Sowerby; POMPECKJ, pp. 776, 779.
1897 Pecten acuticosta LAMARCK; POMPECKJ, p. 776.
1903 Pecten aequalıs Quenstedt; Bistram, p. 37, pl. 3, figs. 4, 5.
1909 Pecten (Chlamys) priscus Schlotheim; Trauth, p. 92.

1910 Chlamys aequivalvis (J. SOWERBY); Lissajot's, p. 352, pl. 10, fig. 2.

1916 Pecten priscus SCHLOTHEIM; JAXOORSKI, p. +17.
1916 Cblamys (Aequpecten) prisca (SCHLOTHEIM); COSSMANN, p. 47, pl. 5, fig. 16.
? 1920 Pecten zigoplocus Di Blasi; Fucini, p. 89, pl. 5, figs. 13, 14 .
1924 Chlamys mcconnelli sp. nov; MCLEARN, p. 46, pl. 5, figs. 1, 9.
1925 Pecten acuturadiatus MUNSTER: DUBAR, p. 259.
1925 Pectcrucuticosta Lamarck; Dubar, pp. 275, 282.
1925 Psendopecten aequivalvis (J. Sowerby); Dubar, p. 277.

1926 Aequipecten priscus (SChlotheim); Staesche, p. 48.

1926 Aequipecten acuticosta (LAMARCK); Stafsche, p. 50, pl. 6, figs. 1, 2.

1926	Aequipecten aequivalu's (J. SOw"ERBY); STAESCHE, p. 51.
1926	Chlamys aequavais (J. Sowerby); ROMAN, p. 113.
1929	Pecten (Pseudopecten) acuticosta LAMARCK; LAN. QUiNe, p. 130.
1929	Pecten (Pseudopecten) priscus Schlutheim; LaNQuine, p. 131.
1932	Pecten (Aequpecters) aequvadzis J. SOWERBY; Tzankov and Buncrv, p. 231.
1935	Chlamys sendellachensis sp. nov; KUHN, p. 470 , pl. 18, tig. 32.
1936	Aequipecten priscus (SCHLOTHFIM); KLHN, p. 248, pl. 9, fig. 6.
1936	Aequipecten acutucosta (LAMARCK); KUHN, p. 248, pl. 12, fig. 46.
1936	Aequipecten aequivalvis (J. Sowerby); KUHN, p. 248, pl. 10, fig. 19, pl. 13, fig. 24.
1936	Aequipecten maxmiliami sp. nov; KOHN, p. 249, pl. 11, figs. 3a, 3b.
1936	Pseudopecten acuticosta (Lamarck); DechasFAUX, p. 59.
1936	Psendopecten aequvalurs (J. Sowerby); Dechas. EAUX, p. 59.
1936	Aequipecten priscus (Schiothenm); Dechas. EAUX, p. 42.
1936	$\begin{aligned} & \text { Aequipecten acutraduatus (MUNSTER); DECHAS- } \\ & \text { EAUX, p. } 42 \text {. } \end{aligned}$
$19+2$	Aequpecten brermgi sp. nov; Rosenkrantz, p. 26.
non 1948	Pecten (Aequpecten) norghensis TAUSCH; DU BAR, p. 163, pl. 13, fig. 12.
1951	Pecten aequivalvis J. Sowfrby; Troedsson, p. 219.
1965	Pecten prischs Schlotheim; Dahm, pp. 27-29.
1965	Pecten cf. achtradiatus Munster, Dahm, p. 27.
1965	Pseudopecten aequivalvis (J. Sowfrbi); Dahm, p. 28.
1965	Chlamys acutcostata (LAMARCK); Mensink, p. 77.
1965	Pecten aequivaluz J. Sowfrbi; Mensink, p. 78.
1966	Aequipecten priscus (SChlothein); Behnyel and GFifr, p. 28.
1966.8	Psendopecten prisca (Schlotheim); C. Palmer, p. 67.
1966b	Psendopectern equivalurs (J. Sowfrby); C. PalmER, p. 72.
1966 b	Pseudopecten prisca (Schlotheim); C. Palmer, p. 72.
1967	Pseudopecten priscus (SChlothfim); Berridge and IVimey-Cook, p. 160.
1972	Pseudopecten aequivalvis (J. Sowerbi); Hallam, p. 408.

Lectotype of Pecten equivalvis J. Sowfrby 1816, p. 83, pl. 136, fig. 1 designated herein; BM L79783; Pl. 2, Fig. 1 herein; H: 79, $\mathrm{L}: 85, \mathrm{I}_{\mathrm{I}}: 48$, UA: 128 ; M. Lias (U. Pliensbachian), Ilminster, Somerset.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Lenticular with rounded diverging ribs and many acute concentric striae; valves equally convex the lower one smoothest; ears equal.

The ribs vary in proportion; they sometimes equal the space between them, but are generally less; they are rounded
and the striae are more or less obliterated over them: the spaces between them are slightly concave.

Pectens are generically described by Lamarck as inèquivalve, wherefore, I suppose, he had not seen any otherwise; but the present species has both valves nearly if not quite, equally gibbous; one valve being simply convex, the other having a trifling reversed undulation near the edge, and differing but little in the pattern. The auricles have not, as I have seen, been found perfect, they are, however, nearly so, and they then show an horizontal line on each side of the beak, with nearly perpendicular lineae or striae. I have one by favour of Dr. Sutton, which has nearly parallel lines with the hinge on the dexter auricle of the broader valve, with the broad costae. This species is commonly found from three to seven inches in diameter. Mr. Strangewayes, from whom I have received several specimens, observes that they are characteristic of the coarse limestone of 11 minster. I have had other specimens from near Lackington, by favour of Mr. Strangewayfs, also from Farley gateway, Gloucestershire; Carrington, Oxfordshire; and from Dursley, Gloucestershire. I believe the species is found in various other parts of England, and 1 have a specimen from France.'

2. AMENDED DIAGNOSIS

Distinguished from $P_{\text {s. }}\left(P_{\text {s. }}\right)$ dentatus and $P_{5 \text {. }}\left(P_{s_{s}}\right)$ veyrasensis by the low dise flanks and curvilinear comarginal striae.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long in juvenile, growing allometrically to become longer than high (text fig. $4+$) towards maximum height of 179 mm (BM 2662). Umbonal angle increasing at a decreasing rate (text fig. 45) to produce concave dorsal margins. Dise flanks low.

Equilateral, moderately convex, left valve slightly more convex than right.

Intersinal distance greater in left valve than right but increasing at a slightly increasing rate in both valves (text figs. 46, 47). Large byssal notch in right valve becoming relatively smaller during ontogeny (text fig. 48).

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Both anterior and posterior hinge lengths increasing at an increasing rate (text figs. 50, 51). Anterior auricle height increasing at a decreasing rate (text fig. 49). All auricles meeting hinge line at approximately 90°. Anterior auricle of right valve meeting disc at approximately 90°, other auricles meeting disc at an acute angle. All auricles ornamented with comarginal striae, anterior auricles also bearing 2-3 fine radial costae.

Both valves ornamented with between 16 and 27 , most commonly 22, radial plicae (text fig. 52). Plicae angular and often wider than sulci in juveniles but becoming more rounded and narrower than sulci later in ontogeny (PI. 1, Fig. 8). Plicae poorly defined at anterior dorsal and posterior dorsal margins of juveniles. Both plicae and sulci bearing fine radial striae and crossed by closely spaced curvilinear comarginal striae.

Shell thickness generally moderate but high beneath plicae.

Text fig. 44: Pseudopecten (Ps.) equivalvis - height/length.

4. DISCUSSION

'Pecten' acuttcosta Lamarce only differs from 'P.' equivaluis Sowerby (lectotype [herein designated]: BM L79783; Pl. 2, Fig. 1; 1) by the angularity of the plicae. There can be little doubt that this is the result of a lower degree of abrasion (see Section 8) and it cannot therefore be the basis for a specific distinction. Most large specimens with angular plicae which are referred to 'P.' acuticosta are derived from low energy condensed deposits and also have relatively low umbonal angles for their heights. However, this appears to be an ecophenotypic feature brought about by relatively fast growth in such facies (see Section 8).
"Pectimtes' priscus Schlotheim was erected for a single specimen from the Sinemurian exhibiting few diagnostic features. Subsequent authors have frequently applied the specific name to small specimens of Ps. (Pseudopecten) and have
maintained a specific distinction from larger specimens (= ' P.' aequivalvis auctt.) on the basis of a lower umbonal angle and reduced number of plicae, which tend also to be acute. Notwithstanding the fact that the holotype (M) of 'Pt.' priscus (HM) is reported to be an abnormally large specimen (H: SO, Dr. J. Hfi ms, pers. comm., 1977) for its stratigraphic horizon, three further criteria indicate that ' P.' priscus auctt. should be included within Ps. (Ps.) equivalvis.
a. Umbonal angle and the number of fully developed plicae both increase during ontogeny (see Section 3) thus small immature specimens of P_{s}. (Ps.) equivalvis have low umbonal angles and appear to have few plicae.
b. Mature specimens from argillaceous facies may exhibit the above characteristics because they are small as a result of stunting (see Section 8).

Text fig. 47: Psendopecten (Ps.) equivalvis - intersinal distance on right valve/length.
c. Mature specimens from low horizons in the stratigraphic range of P_{s}. (Ps.) equivalvis may exhibit the above characteristics because they are small as a consequence of representing an early stage in phyletic evolution towards increased maximum size (see Section 10).
It is very doubtful whether any of the records of ' P.' priscus cited in synonymy represent anything other than one of the above categories of small Ps. (Ps.) equivalvis.
' P.' sublaevis Young and Bird was separated from ' P.' equivalvis on the basis of its low plicae, lacking in comarginal striae. As discussed above, this is almost certainly due to abrasion. 'P.' major Young and Bird appears to represent, by contrast, an unusually well preserved specimen of Ps. (Ps.) equivalvis which still exhibits radial striae on the plicae.

Simpson's (1884) species 'P.' interstinctus, 'P.' rudis and 'P.' dichtomus were all compared with ' P.' priscus and although figures were not provided it seems highly likely that the species represent small specimens of Ps. (Ps.) equivalvis.
The single observed type of ' P.' aequalis Quenstedt (GPIT 4-9-13; Pl. 2. Fig. 5) has 22 plicae and is inseparable from Ps. (Ps.) equivalvis by metric criteria (2). Likewise, one of the syntypes of ' P.' cephus d'Orbigny (MNO 1842C) has 17 plicae and is inseparable by metric criteria (3) while another (PI. 2, Fig. 10) has 21 plicae and exhibits no distinguishing features.

Kuhn's (1935) holotype (M) for 'Chlamys' sendelbachensis (BSPHG 1934 IV 8; Pl. 2, Fig. 4) has 20 plicae and metric proportions (4) within the range of P_{s}. (Ps.) equivalvis. His type material for 'Aequipecten' maximiliani appears to be lost but the diagnostic criteria, three more plicae than is usual in Ps. (Ps.) equivalvis (22) and reduced plical height, can both be accommodated within the known range of 'genetic' and 'environmental' variation in the latter species.

The figure of ' P.' costatulus Hartmann exhibits 17-18 plicae and $\mathrm{H} / \mathrm{UA}(5)$ which is indistinguishable from Ps. (Ps.)
equivalvis. Similarly 'Ch.' moconnelli McLearn has 22 plicae and the description gives no grounds for considering the species as anything other than synonymous with P_{s}. (P_{s}.) equivalvis.

Munster's (1833) figure of ' P.' achitiradiatus shows a specimen with an exceptionally large umbonal angle (125 at $\mathrm{H}: 13.5$) and small auricles. However, examination of the figured specimen (BSPHG AS VII 611; Pl. 2, Fig. 9) shows this to be due to a draughting error. The auricles are in fact broken and the H/UA ratio (6) is well within the range of Ps. (Ps.) equivalvis.
' P.' Hinterbuberi Tietze was erected for a very large specimen ($\mathrm{H}: 152$) said to differ from 'P.' equivalvis by its smaller umbonal angle. However, the figure depicts a broken specimen which could not have provided an accurate value for UA. In all other respects it is identical to P s. (Ps.) equivalvis. The specimen was derived from a loose boulder thus the reported age (Hettangian, Angulata zone) may well be inaccurate. The apparently abnormal size for the stratigraphic horizon (see Section 10) may therefore be spurious.
'P.' Caracolensis Steinmann was erected for a specimen possessing 24 smooth low plicae and characterised by one large median plica. This last feature is fairly common in P_{s}. (Ps.) equivalvis and is probably caused by the interruption of normal growth by damage. The species are inseparable by metric criteria (7).

The figure of ' P.' lugdunensis Michelin reveals a specimen with 25 plicae and metric proportions (8) which are inseparable from Ps. (Ps.) equivalvis. The four auricular costae may however be distinctive and subsequent authors who may have examined the type material (e. g. Staesche, 1926) have synonymised Michelin's species with Ch. (Ch.) valoniensis (q. v.). The preservation of ' P.' lugdunensis as an internal mould may preclude recognition of the intercalary costae characteristic of $\mathrm{Ch} .(\mathrm{Ch}$.$) valoniensis.$

Text fig. 48: $P_{\text {seudopecten }}\left(P_{\text {s. }}\right)$ equivalvis - depth of byssal notch/length.

Texr fig. 49: Psendopecten ($P_{s .}$) equvalvis - height of anterior auricle/length.

The figure of ' P.' Norggliensis Tausch depicts a specimen with 19 plicae and $\mathrm{H} / \mathrm{UA}, \mathrm{I}_{\mathrm{R}} / \mathrm{L}$ and $\mathrm{AH} / \mathrm{L}(9)$ just within the range of P_{s}. (P_{s}) equivalvis. PH / L and, in particular, N / L are distinctly high. However, this could simply be due to inaccurate illustration and the single specimen recorded provides few grounds for a specific separation. Dubar (1948), who may have examined the holotype (M), has applied Tausch's specific name to forms which are clearly conspecific with Ps. (Ps.) dentatus (q. v.).

The description and figures of 'P.' Bodenbendert Behrendsen from Argentina are clearly indicative of the genus W'eyla. However specimens in the GPIG, including what is apparently a type, clearly belong to the genus Pseudopecten. Notwithstanding this nomenclatural confusion it seems unwise at present to include the rather poorly preserved Göttingen specimens within Ps. (Ps.) equivalvis since they appear to differ from the latter by their greater convexity and smaller umbonal angle.

Text fig. 50: Pseudopecten (Ps.) equivalvis - anterior hinge length/length.

The figure of the left valve of ' P.' Johnstrupi Lundgren closely resembles Ps. (Ps.) equivaluis in the number of plicae (20-25) and in H/UA, AH/L and PH/L (10). However, I_{L} / L and the umbonal angle of the right valve $\left(70-80^{\circ}\right)$ are low and may justify a separation, although the drawing could be inaccurate. The same may be true of ' P.' Zigoplocus di BLAsi; FU. (INI whose figure depicts a specimen with 22 plicae and H/UA (11) within the range of Ps. (Ps.) equivalvis but with an abnornally large I/L. Dı Blasl's original description has proved impossible to trace.
'Aequipecten' bierringi from the L. Pliensbachian of Greenland was not figured or described by Rosenkrantz (1942). However it was said to closely resemble ' A.' aequivalvis and it seems extremely likely that it is synonymous with J. Sowfrby's species.
'P.' achticosta Rofmer is clearly a junior primary homonym of Lamarck's species and as such should be rejected. The description leaves little doubt that Roemer's hypodigm fell within the range of variation in P_{s}. (Ps.) equivalvis.

Text fig. 51: Pseudopecten (Ps.) equivalvis - posterior hinge length/length.
'P.'priscis Schlotheim; Dumortifr has the down-sulcal tongueing of the growth lines typical of P_{s}. $P_{s .}$) dentatus rather than P_{s}. (Ps.) equivalvis. ' P.' acutiradiatus MuNSTER; Dumortier is referable to the former species on the basis of the vertically striated disc flanks.

The great majority of authors have followed J. DF C. Sow ERBY'S alteration of the spelling of equivalvis to aequivalvis in vol. 6 of the 'Mineral Conchology' (1829). This is incorrect since J. Sowerby's original spelling in no way contravenes the ICZN rules and therefore must take historical precedence. However. Ps. (Ps.) equivalvis remains something of a misnomer because the shell is noticeably inequivalve.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) equivalvis is first recorded in the Planorbis zone (Hettangian) of Lyme Regis (BM L62437), Dijon (DM 134), Lugano (Bistram, 1903) and Yorkshire (Tate and Blake, 1876). Subsequently it is recorded from the Angulata zone of E. France (Terquem and Piette, 1865) and the Bavarian Alps (Winkifr, 1886) and the Bucklandi zone (L. Sinemurian) of Lyme Regis (BM L77272), the Rhone (Dumiortifr, 1867) and S. Bavaria (Schafhautl, 1851). Ps. (Ps.) equivalvis first occurs commonly in the middle Sinemurian Frodingham Ironstone (Semicostatum-Obtusum zones) and from then on it is widespread and often abundant until the U. Pliensbachian.

Text fig. 52: Pseudopecten (Ps.) equivalvis - frequency distribution for number of plicae.

Extension of the range into the Tenuicostatum zone of the L. Toarcian is evidenced by material from the Cotswolds (OUM J33417-8) and Luxembourg (BSPHG). Most other Toarcian records (e. g. BM LL8142-3 from Lincolnshire, MNO 2073, 2073A-D; MNR B8689; MNP S00963 from N. France) are probably from this zone. However, Hallam (1972) considered that the range extended into the middle Toarcian in Iberia and this horizon may be the source of some of the numerous Toarcian records from the area (e. g. BM LL30836; Dahм, 1965; Dubar, 1925; Vfrneutl and Col. LOMB, 1852). The species is recorded with Hildoceras bifrons in the W. Balkans (Pompfckj, 1897) and Young and Bird (1828) report material from hard bands in the Alum Shale (Bifrons zone) of Yorkshire. In the latter area intensive field work by the author has failed to substantiate Young and Bird's claim. However, collecting from the Oolithe Ferrugineuse at Port-en-Bessin (Normandy) has brought to light a specimen (Pl. 2, Fig. 3) which may be a Bajocian representative of $P s$. (Ps.) equivalvis. In the lack of further material and with the poor preservation of the available specimen
the possibility still remains that it should more properly be referred to Ctenostrcon.

Collecting at Snowshill Quarry, Gloucestershire has failed to substantiate Ager et al.'s (1973) record of Pseudopecten from the M. Bathonian of this locality. Radulopecten vagans and Camptonectes (C.) laminatus are the only pectinids present.

6. GEOGRAPHIC RANGE

Ps. (Ps.) equivalvis is found in all parts of Europe and there seem to be no obvious changes in distribution throughout its stratigraphic range (text fig. 53). There is thus no support for Stafschf's (1926) view that small specimens ($=$ 'Aequipecten' prisctus) originated in the Hettangian of the Rhone and subsequently spread to other parts of Europe in the Sinemurian.

Contrary to Stafsche's opinion, Ps. (Ps.) equivalvis is not known throughout the world at any time. Records outside Europe are restricted to the Americas (text fig. 54) and the

Text fig. 53: Pseadopecten (Ps.) equivalvis - European distribution.

Text fig. 54: Pseudopecten (Ps.) equivalvis - World distribution (Pliensbachian reconstruction).
species is only known to be common in E. Greenland (Rosenkrantz, 1934, 1942). It is probably rare in S. America, Jaworski (1916) having recorded only two specimens and Steinuann (1881) a mere one, from Bolivia. It is by no means certain that the large number of fragments of Ps. (Pseudopecten) from S. America in the GPIG necessarily belong to P_{s}. (Ps.) equivalvis (see Section 4).

With regard to its range outside Europe, Hallam (1977) has suggested that the rarity of Psendopecten at least in the W. Americas, may be due to competition with the ecologically similar aberrant pectinid Weyla. However, the absence of both Weyla and Pseudopecten from Asia, Australia and Antarctica remains to be explained.

The observed distribution of Ps. (Ps.) equivalvis is most obviously explained by migration via the Canadian Arctic. However, there is now some evidence (see p. 25) to suggest that in the Pliensbachian a seaway existed between S. America, S. Africa and Antarctica (or perhaps between N. and S. America) and this could have afforded an alternative routeway.

7. DESCRIPTION OF ECOLOGY

Ps. (Ps.) equivalvis first occurs commonly in the Frodingham Ironstone (Semicostatum-Obtusum zones), a stratigraphically condensed chamosite oolite in Lincolnshire. Entolium (E.) lunare is however a considerably more abundant element of the fauna, which also includes Camptonectes (C.) subulatus, Chlamys (Ch.) textoria, 'Lima', Gryphaea, Astarte and large Cardinia and ammonites. Most specimens of

Ps. (Ps.) equivalvis are disarticulated and have, except in the umbonal region, rounded plicae (Pl. 2, Fig. 6). The maximum height attained is 45 mm (ScM). Contemporaneous specimens from more expanded, lower energy sequences such as the micritic limestones of S. Germany, reach only 25 mm in height white those from marls reach only 10 mm and are much less common (Staesche, 1926). All specimens from argillaceous facies have acute plicae and the limited available data suggests that they also have relatively large umbonal angles for their heights, compared to specimens from ironstones of the same age (text fig. 56). The associated fauna in the argillaceous facies is relatively deficient in E. (E.) lunare and large Cardinia.
L. Pliensbachian chamositic ironstone deposits such as the 'Pecten' Bed (Ibex zone) of Lincolnshire, contain abundant
 thor's collection). All specimens are disarticulated and rest convex up, suggesting strong current activity. This is supported by the essentiatly unimodal size/frequency distribution obtained from a two sq. m. bedding-plane exposure (text fig. 55). Except in the region of the umbo, the plicae are rounded. Other faunal elements are less prominent than in the Frodingham Ironstone.

A high proportion of articulated specimens is indicative of lower energy conditions in the 'Pecten' Bed (Ibex zone) of Blockley, Gloucestershire. The abundance of fish vertebrae and the siderite cement (Hewitt and Hurst, 1977) suggests a period of non-deposition. Ps. (Ps.) equivalvis attains a height (H: 78; OUM J17929) comparable to that in specimens de-

Text fig. 55: Pseudopecten (P_{s}.) equivalvis - frequency distribution for shell height in specimens collected from a 2 sq. m . bedding-plane exposure in the 'Pecten' Bed (Ibex zone) of Lincolnshire.

Text fig. 56: Pseudopecten (Ps.) equivalvis - height/umbonal angle for specimens from condensed and expanded sequences in the Sinemurian.
rived from contemporaneous high energy condensed deposits (see above) but the plicae remain, in contrast, angular at all ontogenetic stages (PI. 2, Fig. 7). The assuciated fauna is deficient in E. (E.) lunare and is dominated by large specimens of Astarte and Mactromya. A variety of less common in- and epifaunal bivalves, gastropods and cephalopds attain a large size at this horizon (Hfwitt and Hurst, 1977).
In contemporaneous low energy expanded sequences such as the Numismalis Mergel (Jamesoni/Ibex zones) of S. Germany, Ps. (Ps.) equitalvis is common but reaches a maximum height of only 37.5 mm (GPIT). In L. Pliensbachian clays in the English Midlands the maximum height is 27.5 mm (OUM J33290). All specimens have acute plicae. Larger specimens are occasionally recorded Irom predominantly clay sequences
but these invariably turn out to be from storm lags at the top of small coarsening upward cycles (Sfllwood, 1972). Thus specimens with rounded plicae reaching a maximum height of 60 mm (author's collection) occur in deposits of the Jamesoni zone at Robin Hood's Bay (Yorkshire) in association with Camptonectes (C.) subulatus, Plicatula, Gryphaea, Gervillella and exhumed Pinna.

In addition to their reduced maximum size, L. Pliensbachian specimens of Ps. (Ps.) equivalvis from uncondensed argillaceous facies also tend to have relatively large umbonal angles for their heights (text fig. 57). The few specimens that plot within the range of forms from condensed facies are almost certainly derived from thin, coarse grained horizons within predominantly clay sequences (see above).

Text fig. 57: Pseudopecten ($P_{\text {s. }}$) equivalvis - height/umbonal angle for specimens from condensed and expanded sequences in the L. Pliensbachian.

Ps. (Ps.) equivalvis is also common in the L. Pliensbachian of E. Greenland, where it occurs in coarse sands and limestones (Rosenkrantz, 1934, 1942), Raasay, where it is abundant in muddy sands (author's collection), and E. Spain, where it is found in bioclastic limestones (Behmit and Geyfr, 1966). It is however conspicuous by its absence from the Jamesoni zone of the Pyrences where condensed deposits contain common P_{s}. $\left(P_{s}\right.$.) dentatus and the first European representatives of W^{\prime} eyla (Damborinea and Mancfinido, 1979).

In the Sandy Series (Margaritatus zone) of the U. Pliensbachian in Yorkshire, P_{5}. (Ps.) equivalvis is common and reaches a maximum height of about 60 mm , while in the similarly expanded sequence of Raasay a maximum height of 70 mm is attained (author's collection). All specimens have rounded plicae. The associated fauna is dominated by $O x-$ ytoma, Protocardia, Gryphater and the scaphopod Dertalum. E. (E.) lunare is rare but in a similar sedimentary and faunal association in the later partsol the Margaritatus zone in Dorset (Thorncombe Sands) it is common and Ps. (Ps.) equivale is is rare. C. Palmbr (1960b) remarked on the small size of specimens Irom a sandy limestone bed (Day's Shell Bed) at the top of the clay sequence (Eype Clay) representing the earlier parts of the Margaritatus zone in Dorset. They were said to reach only $25-30 \%$ of their 'normal' height. However, Palmfr may have been drawing a comparison with specimens from Spinatum zone ironstones (see below) rather
than with those from Margaritatus zone clays whose maximum height (30 mm ; author's collection) is very probably less than that of Palmer's specimens. Ps. (Ps.) equizalvis is not known to be common in argillaceous facies anywhere in the U. Pliensbachian.

Ps. (Ps.) equivaluis is very common in the condensed, high energy, chamositic ironstones of the Spinatum zone in Lorraine, N. W. Germany and most parts of England. All specimens have rounded plicae (Pl. 2, Fig. 1) and the maximum height reached is 179 mm (BM 2662). The associated fauna is essentially the same as for the Margaritatus zone although in Northamptonshire, Oxfordshire and Somerset, where Ps. (Ps.) equivalves is somewhat less common, Ps. (Ps.) dentatus and Ps. (Ps.) veyrasensis also occur. In S. Germany, the Spinatum zone is developed in a condensed but lower energy marlstone facies in which Ps. (Ps.) equivalvis usually exhibits acute plicae (STAESCHF, 1926) and attains a maximum height of 95 mm (GPIT). There are too few specimens available from uncondensed argillaceous facies to allow of any comparison in shape with forms from condensed or higher energy facies.

Ps. (Ps.) equivalvis is now here common after the U. Pliensbachian and over most of Europe its disappearance is correlated with the onset of bituminous shale deposition in the L. Toarcian. In parts of the W. Balkans and Iberian peninsula where the Toarcian is developed in high energy facies the species extends into the Bifrons zone (see Sec-
tion 5). However, in similar facies in the Toarcian of E. Greenland (Rosenkrantz, 1934, 1942) and the Caucasus (Pompeckj, 1897) the species seems to be absent. The largest Toarcian specimens are apparently to be found in the D'Or. bigny Collection ($\mathrm{H}_{\text {max }}$: 92; MNO 2073B). However, D'Orbigny's concept of the Toarcian may also have included parts of the U. Pliensbachian, so such records should be treated with caution.

Although quite widespread in the peri-Mediterranean region, Ps. (Ps.) equivalvis appears to reach large sizes only in high energy deposits such as the U. Pliensbacḩian calcarenites of the Iberian ranges (MENSINK, 1965), the sandy marls of the W. Balkans (Poиpeckj, 1897), the sandstones of Yugoslavia (Uhlig, 1884) and W. Bulgaria (Tzankov and Boncev, 1932) and the Toarcian marly oolites of the W. Balkans (PomPECKJ, 1897).

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that $P_{s .}\left(P_{s}\right)$ equivalvis was a eurytopic species with respect to substrate, only clays formed under conditions of reduced oxygen tension constituting an unfavourable environment. It is also clear however, that there are correlations between the size and shape of Ps. (Ps.) equiralvis and the sediment grain size, rate of sedimentation and energy of the environment. Specimens from condensed deposits reach a large size, those from high energy environments having rounded plicae. Specimens from expanded high energy sandstone sequences reach a somewhat smaller maximum size and have rounded plicae. Specimens from expanded argillaceous sequences are much smaller, have acute plicae, and usually have a low H/UA ratio.

The correlation between high environmental energy and roundness of the plicae is most easily explained as the result of pre- and post-mortem abrasion of the originally angular plicae by wave and current-induced rolling of the shell.

The correlation between stratigraphic condensation and large size could be the consequence of one or more of the following factors:
a) High environmental energy. Most condensed sequences containing large P_{s}. (Ps.) equivalvis are developed as high energy chamosite oolites. In such environments the increased rate of supply of suspended food and dissolved oxygen might be expected to contribute to faster growth. However, the presence of comparably large specimens in a low energy horizon at Blockley seems to argue against this hypothesis.
b) Low turbidity condensed sequences are the result of decreased supply of sediment from suspension thus one can expect relatively clear water. This should lead to a reduction in the time required for cleaning the gills and defaecating and a consequent increase in the time spent feeding. Observations by the author on the extant species Chlamys opercularis reveal that high turbidity forces the animal to close the shell and abandon feeding, thus continuous high turbidity could be expected to markedly affect the growth rate. Slow sedimentation can also be expected to reduce turbidity (and thus enhance growth rate) by promoting the early diagenetic formation of a carbonate cement (Hallam, 1972) which would inhibit resuspension of the sediment by lateral water movement. The fact that Ps. (Ps.) equivalvis attains a considerable
size in expanded sandstone sequences does not however lend support to the view that the very large sizes attained in condensed sequences are simply the result of low turbidity. Neither can the latter easily explain the large sizes attained by presumably nektonic ammonites in condensed sequences.
c) Increased temperature. With the implicit assumption (given empirical support by the work of Nicol, 1967) that higher temperatures enable the development of large size, Hewitt and Hurst (1977) have invoked climatic amelioration to account for the abnormally large sizes attained by molluscs at certain condensed horizons in the English Jurassic. In the case of P_{s}. (Ps.) equivalvis this fails to account for the small size of specimens in stratigraphically equivalent expanded sequences. However, Hallam (1963) has suggested, on the basis of sedimentological evidence, that condensed ironstone formation may take place on shoals and that such environments may be warmer than surrounding deep water areas, characterised by clastic sedimentation. While such a model has the merit of explaining the large size of both benthos and nekton in condensed sequences, it suffers from a lack of actual evidence for increased temperature in the shoal environment. Until some independent evidence for the latter is obtained it seems advisable to adopt a composite theory (involving 2 and 3) to explain the correlation between condensed sequences and the development of large size in P_{s}. (Ps.) equivalvis. It has been assumed throughout that the latter is the consequence of relatively rapid growth. While this seems the most reasonable supposition and has a variety of plausible explanations (see above) the possibility cannot be entirely discounted that some undetected characteristic of the environment of condensed sequences (perhaps reduced predation) increased the length of life and thus allowed the development of larger sizes. An analysis of growth lines can be expected to provide a test for the assumption of faster growth.

The small size and low H/UA ratio of specimens from expanded argillaceous sequences is most easily interpreted as the result of relatively slow growth in conditions essentially opposite to those in the highly favourable condensed sequences. The local abundance of such 'stunted' specimens need not be viewed as evidence against this interpretation (see pp. 55, 124) and indeed 'stunting' may be an inappropriate term to use for the development of what are in fact adaptive shell features (see Section 9).

The lack of $P_{\text {s. }}$ (Ps.) equivalvis in apparently highly suitable condensed facies containing Weyla in the Jamesoni zone of the Pyrenees is further evidence for Hallam's contention (see p. 69) that Pseudopecten and Weyla were competitors. However, the occurrence of P_{s}. $\left(P_{\text {s }}\right)$ dentatus in the same deposits indicates that the competitive reaction did not extend to all Pseudopecten species. Indeed the inverse correlation in numbers or total mutual exclusion of Ps. (Ps.) equivalvis from Ps. (Ps.) dentatus in other areas (see p. 70) suggests that the absence of the former from deposits of the Jamesoni zone in the Pyrenees may be due more to competition with the latter species than with Weyla. Ps. (Ps.) veyrasensis has a similar distribution to Ps. (Ps.) dentatus and thus may also have had a competitive reaction with Ps. (Ps.) equivalvis. The frequent inverse correlation in numbers of $P_{\text {s. }}$ (Ps.) equivalvis and Entolium (E.) lunare is strong evidence for competition. While in ironstones the dominant species appears to
switch from the latter to the former after the Sinemurian there seems to be no secular change in sandstones, the dominant species at any one time or place being, therefore, presumably determined by priority.

9. FUNCTIONAL MORPHOLOGY

The strongly ornamented lower valve and quite thick shell of the large specimens of $P_{\text {s. }}\left(P_{\text {s. }}\right)$ equivatvis common in high energy environments is paradigmatic for an adult reclining mode of life. The large byssal notch indicates that the juvenile obtained stability by means of byssal attachment. However, the allometric reduction in size of the notch indicates that byssal attachment was gradually abandoned during ontogeny. In the morphologically and ecologically similar extant species Chlamys opercularis byssal attachment effectively ceases at shell heights above 50 mm (Soemodifardjo, 1974).

The relatively high convexity of the left valve is nonparadigmatic for reclining but is well suited to providing lift during swimming and combined with the ontogenetic increase in umbonal angle probably served to prolong this capacity until quite late stages in ontogeny.

The small adult size and low H/UA ratio of specimens from expanded argillaceous sequences is adaptive for the environments represented by such sediments. Small size inhibits sinking into the soft substrate while both small size and a relatively large umbonal angle maximise the possibility of escape from sediment swamping by swimming, through maximising the trust/weight ratio of the shell.

Swimming ability in combination with a strongly plicate shell was also probably directed against attempted predation. The disadvantage of a plicate shell, in localising wear on the plical crests, was apparently offset by sub-plical shell thickening.

10. ORIGINS AND EVOLUTION

Undoubted specimens of Ps. (Ps.) equivalvis are known from the Planorbis zone so the origins of the species probably lie outside the Jurassic. However, no obvious ancestors present themselves.

Phyletic size increase is a very marked trend in Ps. (Ps.) equivalvis. However, the prevalence of ecophenotypic size variations (see Section 8) makes for great difficulty in the precise documentation of the trend. It is clear therefore that attention must be concentrated on the same environment at all stratigraphic levels. For this purpose the analysis is restricted to condensed sequences since these seem to represent the most clearly defined environment. Within the latter there is an increase in maximum height from 45 mm (Sinemurian) to 90 mm (L. Pliensbachian) to 179 mm (U. Pliensbachian). There may also be an associated acceleration in the development of H / UA since large L . and U . Pliensbachian specimens have H/UA values which plot above a projected 'average' Sinemurian ontogeny estimated from 'static' data (text fig. 58). However, the rather broad limits of the available data do not allow exclusion of the possibility that Sinemurian ontogenies in fact exhibit a much more rapid increase in H with

Text fig. 58: Pseudopecten (Ps.) equvalves - height/umbonal angle for specimens from Sinemurian, and L. and U. Pliensbachian condensed sequences.
respect to UA thus the high H/UA values of at least large U. Pliensbachian specimens could represent no more than hypermorphic extension of Sinemurian allometry through the medium of phyletic size increase. Nevertheless, the H/UA values of moderate sized L. Pliensbachian specimens do seem to represent a genuine departure from Sinemurian ontogenies thus acceleration would appear to be evinced in at least the early stages of the phylogeny of Ps. (Ps.) equivalvis. If this is the case U. Pliensbachian H/UA values would seem to indicate subsequent retardation in the development of H/UA albeit only to the extent of returning ontogenies to a Sinemurian condition.
There is clearly a pressing need either for more 'static' data or for a 'dynamic' analysis of shape development using growth lines in order to facilitate a rigorous assessment of the role of heterochrony in the phylogeny of P s. (Ps.) equivalvis.

Whether or not acceleration and subsequent retardation of shape development has occurred the fact remains that large U. Pliensbachian forms of Ps. (Ps.) equivalvis have relatively high H/UA ratios. As such they are mechanically inferior to earlier forms with respect to their design for swimming. This is difficult to interpret in conjunction with phyletic size increase. One might have expected evolution towards a more efficient, low H/UA, design in order to counteract the limitation on mobility and consequent susceptibility to predation imposed by increased size. (In living scallops a reduced ratio of muscle strength to body weight leads to the progressive loss of swimming ability as size increases during ontogeny [Gould, 1971; Soemodihardjo, 1974]; as a result escape from predators by flight eventually becomes impossible.) A resolution to this paradox may lie in the observation that some large sessile bivalves resist predation by the absolute strength of the adductor muscle. Thus Paine (1976) has observed that starfish are unable to prise apart the valves of Mytiluts which are more than $8-10 \mathrm{~cm}$ in length. One may therefore perhaps infer that Ps. (Ps.) equivalvis gave up a fugitive policy towards the end of its stratigraphic range in favour of a policy of passive resistance. Such a strategy would only be worthwhile if large size could be achieved rapidly thus the hypothesis could be tested by an analysis of growth lines to see if faster growth was, in fact, characteristic of later populations. 'Static' data (see above) certainly allows that this may have been the case.

Phyletic increase in size, together with an apparent retardation in shape development and a reduction in tolerance of argillaceous substrates in the U. Pliensbachian (sec Section 7) points to the prevalence of ' K ' selection towards increased trophic efficiency. The high abundance of Ps. (Ps.) equivalvis in certain U. Pliensbachian chamosite oolites need not be viewed as evidence against this interpretation since it may well be the result of stratigraphic condensation.

The widespread development of unfavourable bituminous shale facies in the L. Toarcian undoubtedly caused a severe depletion of the numbers of $P s$. (P_{5}.) equivalvis. The subsequent extinction of the species may have been the simple result of depletion to such an extent that re-establishment of self-supporting populations was impossible. However, it may also have been due to competition with one or more of the newly evolved, ecologically similar species, P_{s}. (Echinopecten) barbatus, Propeamussium (P.) laeviradiatum and Entolum (E.) corneolum.

Pseudopecten (Pseudopecten) dentatus
(J. de C. Sowerby 1827a)

PI. 2, Figs. 11-14; text figs. 59-61, 62 (pars)

Synonymy

v* 1827a Pecten dentatus sp. nov; J. DE C. Sowerby, p. 143, pl. 574, fig. 1.
v 1833 Pecten priscus Schlotheim; Goldfuss, p. 43. pl. 89, fig. 5 (non Schlotheim sp.).
v 1833 Pecten dentatus J. De C. Sowerby; Goldeuss, p. 46, pl. 90 , fig. 7.

1850 Pecten dentaths J. de C. Sowerby; d'Orbigny, v. 1, p. 285.
v non 1858 Pecten dentatus J. De C. Sowferby; Quenstedt, p. 753, pl. 92, fig. 3.

1860 Pecten Thiollien sp. nov; Martin, p. 89, pl. 6, figs. 21-23.
1864 Pecten Thiollieri Martin; Dumortier, p. 62, pl. 10, figs. 4-7.
1864 Pecten Euthymei sp. nov; Dunortier, p. 64, pl. 10, figs. 8-10.
1867 Pecten prischs Schlotheim; Dumortier, p. 216, pl. 48 , fig. 4 (non Schlotheim sp.).
1867 Pecten dentatus J. de C. Sowfrby; Waagen p. 632.

1868 Pecten Dienlafaiti sp. nov; Jaubert, p. 234.
1869 Pecten acutivadiatus MUnster; Dumortier, p. 135, pl. 21, fig. 8 (non Munster sp.).
? 1872 Pecten Bersaskensis sp. nov; Tietze, p. 106, pl. 6, fig. 3.
(?) 1876 Pecten Thiollieres Martin; Tate and Blake, p. 363.
(?) 1884 Pecten Thiollieri Martin; Simpson, p. 170.
? 1886 Pecten Thiollieri Martin: Winkier. p. 30.
? 1903 Pecten (Chlamys) Thiollierei Martin; Bistram, p. 33, pl. 2, figs. 13-15.
? 1904 Chlamys aequisplicata (Terquem); Cossmann. p. 503, pl. 16, fig. 15 (non Terquem sp.).

1909 Pecten (Chlamys) cf. amphiarotus Di Stefano: Trauth, p. 90, pl. 2, fig. 17.
? 1924 Pecten dobbertinensis sp. nov; Ofrtel. p. 564.
1925 Pecten priscus var. Dieulafaiti Jaubert: Dubar, p. 266, pl. 5, figs. 1-6.
(?) 1926 Cblamys Thiolliert (Martin); Roman. p. 105.
1929 Pecten (Pseridopecten) Dienlufaiti Jaubert; LaN QUINE, p. 131, pl. 3, fig. 2.
1936 Aequipecten thiollerei (Martin); Dechaseaux, p. 40.

1936 Aequipecten Euthymei (Dumortier); Dechas EAUX, p. 41.
1936 Aequipecten priscus var. Dieulafaiti (JAUBERT); Dechaseaux, p. 42.
non 1948 Pecten (Chlamys) aff. bersaskensis Tietze; Du BAR, p. 162, pl. 14, figs. 4a, 4b.
1948 Pecten (Aequipecten) norgliensis Tausch; Du BAR, p. 163, pl. 13, fig. 12 (non Tausch sp.).
1948 Pecten (Aequipecten) semiarticulatus G. Mene ghini; Dubar, p. 216, pl. 28, figs. 22-25, text fig. 53 (non G. Meneghini sp.).
(?) 1950 Chlamys Thiollerei (Martin): Roman. p. 25.
1966 Aequipecten dieulafaiti (Jaublert); Behmel and Geyer, p. 28.
1973 Chlamys (Aequipecten) Thiollerei (MARTIN); LENTini, p. 28, pl. 15, fig. 6.

Lectotype of Pecten dentatus J. DE C. Sower. by 1827a, p. 143, pl. 574, fig. 1 designated herein; BM 20719; Pl. 2, Figs. 11, 12 herein; H: 55, L: 58, UA: 109, PL: 20; gravels derived from M. Lias (U. Pliensbachian), Bugbrook, Northamptonshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Nearly orbicular, convex, minutely striated concentrically, ribbed; ribs about twenty close, large, angular, obtuse; ears defined, small: margin deeply toothed; valves similar.
The peculiar characters of this Pecten are the sharp projection of the edge between each rib and the flat inclined sides of each rib.

Several specimens of this fossil are in the collection of Miss BAKER, who found them in transported fragments of limestone, in what are there called gravel pits, at Bugbrook and Staverton, in Northamptonshire. It also occurs in the valley of Catmus in Rutlandshire. The figure is taken from a specimen which has both valves, but wants the ears; they are supplied from another, in other respects inferior, individual.'

Text fig. 59: Pseudopecten (Ps.) dentatus - European distribution.

2. AMENDED DIAGNOSIS

Distinguished from $P_{s .}\left(P_{s}\right.$.) equivalvis by the higher, vertically striated, disc flanks (Pl. 2, Fig. 13) and down-sulcal tongueing of the comarginal striae (Pl. 2, Figs. 11, 12). Distinguished from Ps. (Ps.) veyrasensis by the larger modal number of plicae (17/18 cf. 14).

Text fig. 60: Pseudopecten (Ps.) dentatus - height/length.

3. AMENDED DESCRIPTION

Essentially similar to Ps. (Ps.) equivalvis apart from the diagnostic features (see Section 3), smaller maximum height 70 mm ; DUbar, 1925), greater convexity, acute angle between the anterior auricles and the hinge line, obruse angle be-
tween the posterior auricles and the hinge line, and the ornament. Both valves ornamented with between 16 and 20 (most commonly 17 or 18) radial plicae (text fig. 62), rounded on the right valve, angular on the left. Usually one more plica on left valve than right; plicae occasionally bearing lamellae near the anterior and posterior margins.

Metric proportions are plotted in text figs. 60, 61.

Text fig. 61: Pseudopecten (Ps.) dentatus - height/umbonal angle.

4. DISCUSSION

The lectotype (herein designated) of 'Pecten' dentatus J. DE C. Sowerby (BM 20719; Pl. 2, Figs. 11, 12; 1) is a large, somewhat atypical, form with 20 plicae. It has moreover suffered post-mortem compression such that the characteristic
features of high disc flanks and convexity are not apparent. However, the diagnostic ventral tongueing of the sulcal growth lines is visible and leaves no doubt that the specimen should be the name bearer for the species described in Section 3. 'P.' prische Schlotheim; Goldfuss (non Schlotheim) also exhibits this feature while ' P.' acutiradiatus Munster; Dumortier (non Munster) has the vertically striated disc flanks diagnostic of Ps. (Ps.) dentatus.
'P.' Thiollieri Martin was said to have 20 plicae but the figures show only 17 or 18 as is typical of Ps. (Ps.) dentatus. Moreover, the characteristic convexity and disc flank ornament of the latter species is well displayed. Similarly, 'P.' Thiollieri Martin; Winkler was also said to have 20 plicae but a specimen (BSPHG) collected from the same horizon and locality as Winkıer's, exhibits only 16 plicae. Records of Martin's species in Dechaseaux (1936) and Len. tini (1973) refer to specimens with, respectively, vertically striated disc flanks and ventrally tongueing sulcal growth lines, as in P_{s}. $\left(P_{s}\right)$ dentatus. However, specimens referred to Martin's species by Bistram (1903) appear to have curvilinear growth lines and 21 plicae, as in Ps. (Ps.) equivalvis. In view of the evident possibility of confusion with the latter species, inadequately described and unillustrated records of Martiv's species in Tate and Blake (1876), Simpson (1884) and Roman $(1926,1950)$ can only be tentatively synonymised with Ps. (Ps.) dentatus. However, examples of Martin's species with 20 plicae and the disc flank ornament and convexity characteristic of P_{s}. (Ps.) dentatus are clearly figured and reported to be common by Dumortier (1864). It may therefore be that the mean (and perhaps range) in the number of plicae was higher early in the stratigraphic range of the species.

Text fig. 62: Pseudopecten (Ps.) veyraserisis/dentatus - frequency distribution for number of plicae.
'P.' Euthymei Dunortier has the characteristic disc flank and sulcal ornament of $P s .(P s$.$) dentatus and the number of$ plicae (16) is within the range of variation in the latter species.
'P.' Dienlafaiti Jaubert was erected for a specimen originally referred to 'P.'priscus Schlothem by Dumortier (1867). The number of plicae (17) and the down sulcal tongueing of the growth lines indicate its identity with Ps. (Ps.) dentatus. Subsequent varietal use of the name does not depart from Jaubert's hypodigm.
'P.' Bersaskensis Tietze was erected for a single specimen which was said to have 16 plicae, thus suggesting that it may be conspecific with Ps. (Ps.) dentatus. However, the width of the sulci and shallowness of the byssal notch may justify a specific separation. Indeed, only 15 plicae are depicted in the figure and this together with the fact that Dubar (1948) has applied Tiftzf's specific name to forms with $1+$ plicae, sug-
gests that 'P.' Bersaskensis may be a synonym of Ps. (Ps.) veyrasensis.
'Chlamys' cf. aequiplicata (Terquem); Cossmann (non Terquem) has 16 plicae but the smail size of the figured specimen does not allow an unequivocal specific determination.
'P.' ('Ch.') cf. amphiarotus Di Stffavo; Trauth (non Di Stefano) was applied to 8 specimens possessing between 17 and 19 plicae, moderate convexity and ventrally tongueing sulcal growth lines as in P_{5}. (Ps.) dentatus.
' P.' dobbertinensis Oertel was separated from ' P.' aequivalvis J. Sowfrby by the reduced number of plicae (17) and greater conswity. Although a figure was not provided this is strongly suggestive of equivalence with $P_{s .}\left(P_{S}\right)$ dentatus.

The names ' P.' ('Aequipecten') noriglicnsis $\mathrm{T}_{\mathrm{AuSCH}}$ (non Tausch) and ' P.' ('Ae.') semiarticutatus G. Meneghini (non G. Meneghini) were applied by Dubar (1948) to specimens with, respectively, 16 and 17 plicae. In both cases the downsulcal tongueing of the comarginal ornament indicates that they should be included within Ps. (Ps.) dentatus.

Quenstedt's (1858) use of J. de C. Sowerby's specific name is for a specimen (GPIT 2-92-3; Pl. 6, Fig. 12) which is clearly a representative of the 'coarse' phenotype of Chlamys (Ch.) textoria.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) dentatus first occurs in the Planorbis zone (Hettangian) when it is locally common. In like manner it is lound in all stages until the U. Pliensbachian. Toarcian records are limited to two specimens.from Adderbury, Oxon (BM L30490) which are almost certainly from the lower part of the stage. However, Ps. (Ps.) dentatus returns in moderate numbers in the Aalenian/Bajocian. A single specimen from the Parkinsoni zone (BM L77551) is the last known representative of the species.

6. GEOGRAPHIC RANGE

Ps. $\left(P_{s .}\right)$ dentatus occurs sporadically over the whole of the European region (text fig. 59) but is unknown from the rest of the world. Within Europe the patchy distribution of the species is probably at least in part due to the localised development of the favoured condensed sedimentary facies (see Section 8). However, gradual migration from an initial Hettangian base in S. Europe may also have controlled distribution. In the Sinemurian the species is only common in the Rhone (Dumortier, 1867) yet apparently suitable condensed facies are well developed in, for instance, the Frodingham Ironstone of Lincolnshire. The only records from N. Europe during the Sinemurian are from clays of the Bucklandi zone in Yorkshire (Tate and Blake, 1876; Simpson, 1884). L. Pliensbachian records are more widespread in continental Europe yet Ps. (Ps.) dentatus is again conspicuous by its absence from condensed deposits in England (e. g. the 'Pecten' Beds of Blockley, Glos., and Scunthorpe, Lincs.). With reference to a hypothetical migration it should however be noted that the foregoing examples are of horizones in which Ps. (Ps.) equivalvis, a possible competitor (see Section 8), is abundant.

In the U. Pliensbachian the range of Ps. (Ps.) dentatus extended north to include England and also spread south to Morocco (Dubar, 1948). However, in the M. Jurassic the species was restricted to England despite the development of apparently suitable condensed facies, lacking in P_{s}. (Ps.) equivaluis, in other areas (e. g. S. Germany and France).

7. DESCRIPTION OF ECOLOGY

$P_{\text {s. }}$ (Ps.) dentatus is quite common in the Planorbis zone (Hettangian) of the Rhone basin where it reaches a maximum height of 35 mm (Dumortier, 1864). A general impression gained from the literature is that forms with plical counts in the upper part of the range of variation may be more common than at later horizons in the stratigraphic range (see Section 4). The associated sediments are ferruginous limestones with a diverse fauna of ammonites, crinoids and corals together with the bivalves Chlomys (Ch.) valomensis, Ch. (Ch.) pollux, Plagiostoma, Plicatula and Cardinia. In the same region Ps. (Ps.) dentatus becomes very common in the Oxynotum zone (Sinemurian) which is represented by a maximum of 8 m of limestone. Large, well preserved specimens occur with abundant 'Terebratula', ammonites and the bivalves Cadina and Gryphaea (Dumortier, 1867).
In the Jamesoni zone (L. Pliensbachian) of the Pyrenees, Ps. (Ps.) dentatus is locally common enough to form lumachelles containing specimens up to a maximum height of 70 mm (Dubar, 1925). In this region the whole substage is condensed into a $2-3 \mathrm{~m}$ succession containing abundant ammonites and the pectinids Ch. (Ch.) textoria, Entolium (E.) lundre and Weyla. Ps. (Ps.) equivaluis is notable by its absence.
$P_{s .}$ (Ps.) dentatus occurs abundantly in reefal deposits in the U. Pliensbachian of Morocco where it is associated with corals, algae, brachiopods and large bivalves of the genera Lithiotis, Opisoma and Pachyrisma (Dubar, 1948). Ps. (Ps.) veyrasensis also occurs but Ps. (Ps.) equivalvis is absent. Ps. (Ps.) dentatus is found, albeit rather less commonly, in nonreefal micritic limestones in N . Africa and Provence where it is often associated with accumulations of rhynchonellid and terebratulid brachiopods (Lanquinf, 1929). In the U. Pliensbachian of England, Ps. (Ps.) dentatus only occurs in any numbers in deposits of the Spinatum zone in Oxfordshire, Northamptonshire and Somerset, where it reaches a maxinnum height of 55 mm (BM 20719). The sediments are chamositic oolites, locally sandy, containing a launa dominated by the brachiopods Tetrarbynchia tetrabedra and Lobothymis punctata. E. (E.) Iunare, Ps. (Ps.) veyrasensis and P_{S}. ($P_{\text {s. }}$) equivalvis also occur but the last is much less common than in contemporaneous deposits further north (e. g. Cleveland Ironstone) where $P_{\text {s. }}\left(P_{S}\right.$.) dentatus is absent.

In the M. Jurassic Ps. (Ps.) dentatus is only known to occur in any numbers in the condensed ironshot limestones of the Aalenian/Bajocian in Somerset and Dorset where it attains a maximum height of 38 mm (BM 52121). The associated fauna is dominated by terebratulid and rhynchonellid brachiopods and the bivalves Astarte, Pholadomya and Trigonia.
Apart from the occurrences discussed above Ps. (Ps.) dentatus is a rare species. Wher it is found over a broad palaeolatitudinal range, as in the U. Pliensbachian, the species seems to be more common towards the south.

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that environments of relatively high temperature and low turbidity were favourable to P_{s}. ($P_{\text {s. }}$) dentatus. The former view is evidenced by the relative abundance of the species in low palacolatitudes while the latter view is evidenced by the large size and frequent abundance in condensed sequences where a combination of slow sedimentation and early diagenetic cement formation probably reduced turbidity (see p. 7I). The association with hermatypic corals, which are unable to tolerate high turbidity, can presumably be explained on the same basis, while the extreme rarity of the species in the Toarcian can be seen to be the consequence of the widespread development of expanded clay facies, producing turbid waters and possibly soupy substrates.

Reef deposits and some of the condensed sequences (e. g. M. Lias chamosite oolites and the Aalenian/Bajocian ironshot limestones of England) were probably characterised by high environmental energy as well as low turbidity. However, others (e. g. those in the L. Lias of S. France) were probably formed under more tranquil conditions, indicating that rapid water movement was not a prerequisite for P_{s}. (P s.) dentatus. Indeed the absence of the species from a number of apparently suitable condensed sequences (see Section 6) coupled with its occasional presence, in moderate numbers, in expanded limestone sequences suggests that low turbidity may not have been the sole or even most important factor controlling distribution. The association with numerous brachiopods in both high and low energy environments is unusual for a Jurassic pectinid and some reliance on the presence of the latter group, perhaps for provision of firm substrates for the byssaf attachment of the juvenile (see Section 9), may thus explain the localised occurrence of Ps. $\left(P_{s .}\right)$ dentatus. Another explanation may be provided by competition with the eurytopic species Ps. (Ps.) equizaluis whose numbers are inversely correlated with those of P_{s}. (Ps.) dentatus in sediments whose physical environment of Jeposition would appear to have been suitable for both species. Competition with Ps. (Ps.) equivalvis in such environments could account for the rarity of Ps. (Ps.) dentatus in the I. Lias of N. Europe and thus obviate the need to invoke a migration from a more southerly source (see Section 6). There is nos cridence for competition with Ps. (Ps.) veyrusensis, Entolutm (E.) Itnare, Chlamys or W^{\prime} eyla (see p. 71).

It must be admitted that a unified explanation for the patchy distribution of P_{5}. (P_{5}.) dentatus is still wanting and a more detailed study of its palaeoecology might be expected to reveal some critical aspect of stenotopy which has hitherto gone undetected.

9. FUNCTIONAL MORPHOLOGY

In Ps. (Ps.) dentatus moderate adult size and shell thickness appear to represent a compromise between the opposing paradigms for reclining in both high and low energy environments. The firm substrates usually occupied under such conditions (see Section 8) perhaps also allowed the development of a relatively convex shell with its attendant strengthening and stiffening attributes by reducing the danger, to which such a shape is susceptible, of sinking into the substrate. The
increased mechanical efficiency thus acquired could account for the smaller number of plicae relative to the less convex species Ps. (Ps.) equivalvis. The occasional presence of Ps. (Ps.) dentatus in expanded micrite sequences does not however support the foregoing interpretation of morphology as an adaptation to a reclining mode of life. The moderate shell size and convexity would have been poorly suited to reclining on the relatively soft substrates afforded by such sediments. Moreover, the large juvenile byssal notch indicates that P_{s}. (Ps.) dentatus was byssate for at least the early part of its ontogeny. The subsequent relative reduction in the size of the notch indicates that this ability was gradually lost but in the morphologically similar Recent species Argopecten gibbus (= Aequipecten gibbus nucleus) byssal attachment continues to shell heights of 35 mm (Stanley, 1970). It may therefore be that at least early representatives of Ps. (Ps.) dentatus (see Section 7) were byssate throughout life.

10. ORIGINS AND EVOLUTION

Since Ps. (Ps.) dentatus is recorded in the Planorbis zone its origins must be sought before the Jurassic. 'Pecten' coronatiformis Krumbeck (1924) a species described from the U. Trias of Timor with vertically striated dise flanks and ventrally tongueing growth lines in the sulci, seems the most likely ancestor. Krumbeck's species differs from Ps. (Ps.) dentatus only in the possession of angular plicae on the right valve and rounded plicae on the left valve.

Within Ps. (Ps.) dentatus maximum height shows no significant overall phyletic change in the passage from the Hettangian (30 mm) to the L. Pliensbachian (70 mm) to the U . Pliensbachian (55 mm) to the Aalenian/Bajocian (38 mm). There is, however, limited evidence (see Section 4) for phyletic change in the pattern of plical variability, Hettangian populations seeming to have a higher mean number of plicae. Later populations may have been subject to character displacement consequent upon competition with Ps. (Ps.) equivalvis (see Section 8), a species having a higher modal number of plicae ($22 \mathrm{cf}, 17 / 18$) which only became abundant in the Sinemurian. Much more detailed analysis of Hettangian populations is needed to establish the reality of the phyletic change and a test of the character displacement hypothesis through an analysis of Aalenian/Bajocian populations (which, if character displacement has been operative, should show an increased mean number of plicae due to the decline of Ps. (Ps.) equivalvis) is also required. The lack of an obvious functional basis for character displacement in this example need not be viewed as evidence against its action. Most reported cases (e. g. Russell, 1972; Schindel and Gould, 1977) can only be explained by invoking selection of a pleiotropic gene which also codes for a significant but undetected physiological difference.

It is by no means clear how an apparently stenotopic and geographically restricted species such as Ps. (Ps.) dentatus managed to re-establish itself after a drastic reduction in numbers through the widespread development of unfavourable facies in the Toarcian, when the relatively eurytopic and cosmopolitan Ps. (Ps.) equivalvis suffered a similar decline which apparently led to its extinction (see p. 73). Neither is a convincing deterministic explanation available to account for the Bajocian extinction of Ps. (Ps.) dentatus although it
could relate to the extinction of some commensal species (see Section 8).

Pseudopecten (Pseudopecten) veyrasensis (Dumortier 1864) Pl. 2, Figs. 19-21; text figs. 62 (pars), 63

Synonymy	
1855	Pecten aequiplicatus sp. nov; Terquem. p. 323, pl. 23, fig. 5.
1864	Pecten veyrasensis sp. nov; Dumortier, p. 163, pl. 24, fig. 15.
1869	Pecten Julianus sp. nov; Dumortier, p. 307, pl. 40, fig. 1.
1869	Pecten Humberti sp. nov; Dumortier, p. 308, pl. +0. fig. 2.
? 1872	Pecten Bersaskensis sp. nov; Tietze, p. 106, pl. 6, fig. 3.
1878	Pecten beterotus sp. nov: Gemmellaro and Dr Blasi in Gemmellaro, p. 391, pl. 30, tigs. 3-5.
1878	Pecten isoplocus sp. nov; Gemmellaro and Di Blasi in Gemmellaro, p. 392, pl. 30, figs. 6, 7.
1886	Pecten Seguenzae sp. nov; Di Stffano, p. 135, pl. 4, figs. 31-33.
1892	Pecten convexus Parona; Parona, p. 16, pl. 1, fig. 4.
non 1904	Chlamys aequiplicata (Terquem); Cossmann, p. 503 , pl. 16, fig. 15.
1926	Chlamys Humberti (Dumortier); Roman, p. 113.
1929	Pecten (Pseudopecten) julianus Dumortier; LaNQUINE, p. 131.
1932	Pecten cf. Julianus Dumortier; Tzankov and Boncev, p. 231, pl. 1, fig. 10.
non 1936	Aequipecten aequiplicatus (Terquem); DechasEaUX, p. 41.
1948	Pecten (Cblamys) aff. bersaskensis Tietze; Du BAR, p. 162, pl. 14, figs. 4a, 4b.
1948	Pecten (Aequipecten) Julianus Dumortifr; DuBAR, p. 163, pl. 13, figs. 13a, 13 b.
non 1973	Chlamys (Aequpecten) aequiplicata (Terquem); Lentini, p. 27, pl. 15, fig. 3.
	The type material of Pecten Veyrasensis Du MORTIER 1864, p. 163, pl. 24, fig. 15 may be in MHNL. Dumortifr cites the following dimensions: $\mathrm{H}: 20, \mathrm{~L}: 20, \mathrm{C} / 2: 5, \mathrm{UA}: 93$. The material was derived from the M. Lias (U. Pliensbachian) of Ardèche.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Testa orbiculari, compressa, costata, costis circa 13 angulatis latis, rugis transversis impressis, quae in medio costarum angulosae sursum ascendunt, intervallis profunde impressis, foraminatis.

Dimensions: longeur 20 millim., largeur 20 millim., épaisseur 5 millim. $1 / 2$, ouverture de l'angle apical 93°.

Coquille arrondie, épaisse, portant environs 13 côtes, grosses, carenées, ornées de rides saillantes, en chevrons, dont le sommet est dirigé en haut. Les sillons qui séparent les Côtes sont étroits et profonds, et comme les chevrons qui ornent les côtes viennent s'y rencontrer, il en resulte que ces sillons ne sont qu'une serie de petites cavités resserrées entre les extremités de ces chevrons. Entre la dernière côte et la bord de la coquille il existe une petite aréa, ornée de striés transverses.

Le bord cardinal est drott - L'oreille anterieure grande, ornée de striés verticales sinueuses et fortement enchancrée pour le passage du byssus: oreille posterieure... La coquille est fortement sinueuse dans la région palleale. Ce Pecten est précieux, parce que grace sa livrée riche et compliquée, il est toujours reconnaissable, même dans ces fragments. Il paraît spécial aux dépôts de l'Ardeche: je l'ai recueilli a Veyras, dans les couches remplies de tiges du Neuropora socualis, si remarquable de cette localité.

Localité: Veyras. r. Explication de la figure: Pl. XXIV, fig. 15, Pecten Veyrasensis de Veyras, grossi deux fois. De ma collection.'

2. AMENDED DIAGNOSIS

Distinguished from Ps. (Ps.) dentatus and Ps. (Ps.) equivalvis by the lower modal number of plicae ($14 \mathrm{cf} .17 /$ I8 and 22 respectively) and from the latter also by the vertically striated disc flanks and down-sulcal tongueing of the comarginal striae.

3. AMENDED DESCRIPTION

Essentially similar to P_{s}. (Ps.) dentatus, differing only by the diagnostic feature (see Section 2), the range of plical variation (12-15, text fig. 62) and by the tendency to develop a rectilinear plical form on the shell interior (Pl. 2, Fig. 21). The maximum height is 74.5 mm (GPIG).

4. DISCUSSION

The specific name applicable to the range of forms making up the left-hand peak of text fig. 62 is a matter of some uncertainty. Apparently, the earliest description of a species within the 12-15 plicae range is 'Pecten'acquiplicatus Terquem. Although the text specifies the relatively uncommon number of 12 plicae the figure illustrates a more typical specimen with 15 plicae. However, Terquevialso referred to small spines on the
left valve and subsequent applications of the name, by authors who may have had access to the type material, have been to forms with 12 plicae and spines (Dechaseaux, 1936) or 10 plicae (Lentini, 1973) which suggest that ' P.' aequiplicatus is a poorly figured junior synonym of Spondylopecten (Plesiopecten) subspinosus. In contrast, Cossmann (1904) has figured a specimen with 16 plicae under Terquem's species which suggests that ' P.' dequiplicatus is an extreme variant of Ps. (Ps.) dentatus. In view of this ambiguous usage and in the lack of knowledge concerning the whereabouts of the type material, it seems best to rule out Terquem's species as a candidate for the name of the species described in Section 3. The next available name is ' P.' Veyrasensis Dumortier. The original description (see Section 1) specifies 13 plicae although the figure shows a more typical number of 14 . Dumortier's species 'P.' Julianus and 'P.' Humberti, with 12 and 14 plicae respectively, fall within the range of variation and exhibit no other distinguishing features.

The original description ol 'P.' Bersatskensis Tietze specifies 16 plicae (outside the range of P_{s}. (P_{s}.) veyrasensis) but since the figure depicts only 15 plicae and specimens with 14 plicae are referred to Tietze's species by Dubar (1948), it is possible that 'P.' Bcrsaskensis is a synonym of Ps. (Ps.) veyrascnsis. However, the width of the sulci and shallowness of the byssal notch may justify a distinction, although this appearance could be due to reversed printing of a copper engraing (see p. 17).
' P. beterotus and ' P.' isoplocus Gemmellaro and Di Blasi exhibit 13-14 and 14 plicae respectively, and both have the moderately high disc flanks, rounded right valve plicae and angular left valve plicae characteristic of P s. (P s.) veyrasensis. 'P.'Seguenzac Distefavo with 14-15 plicae is similarly inseparable.

The original description of ' P.' convexus Parona has proved impossible to trace but Parona's (1892) subsequent use of the name is for a specimen whose figure is indistinguishable from Ps. (Ps.) reyrasensis.

Text fig. 63: Pseudopecten ($P_{\text {s. }}$) veyrasensis - European distribution.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) veyrasensis apparently first occurs in the Angulata zone (Hettangian) of the Rhone, where it is fairly common (Dumortier, 1864). There are no unequivocal Sinemurian records although numerous specimens are recorded from an unspecified horizon in the Hettangian/Sinemurian sequence of Sicily (Gemmellaro, 1878). L. Pliensbachian records are restricted to 6 specimens (BM L92958-63) from the Jamesoni zone of the latter area but the species becomes locally quite common again in the U. Pliensbachian. There are no records after the Spinatum zone.

6. GEOGRAPHIC RANGE

Ps. (Ps.) veyrasensis is unknown outside the European region. Within Europe (text fig. 63) the limited available data (with unequivocal Hettangian records being restricted to the Rhone and U. Pliensbachian records extending from Morocco to England) suggests a distribution pattern mirroring that of Ps. (Ps.) dentatus, thus a northward migration may have occurred (however see p. 76).

7. DESCRIPTION OF ECOLOGY

P_{s}. $\left\langle P_{s .}\right.$.) veyrasensis is quite common in the condensed ironshot lumachelle (Angulata zone) of the northern Rhone basin where it attains a maximum height of 27 mm (DM). The diverse associated fauna includes Entolium (E.) lunare, Pinna, Plicatula and Cardinia. In the Hettangian/Sinemurian of Sicily, Gemmellaro (1878) records 23 specimens of Ps. (Ps.) veyrasensis ($\mathrm{H}_{\max }$: 20) from limestones with a diverse neritic fauna dominated by gastropods, the bivalve 'Modiola', and the brachiopods Spiriferina and Rhynchonella. From the same area Di Stefano (1886) records Ps. (Ps.) veyrasensis from an unspecified horizon in the Trias/L. Lias. 6 specimens (BM L92958-63) labelled 'Jamesoni zone, Sicily' may have been the basis for Di Stefano's record and allow a more accurate stratigraphic positioning since they are named 'P.' Seguenzae, his synonym for Ps. (Ps.) veyrasensis (see Section 4). Di Stefano describes an associated fauna consisting mainly of ammonites, spiriferid, terebratulid and rhynchonellid brachiopods and the bivalves Entolium (E.) lunare, Oxytoma, Pinna, Plicatula, Modiolus and Pboladomva.

In the U. Pliensbachian of Morocco Ps. (Ps.) veyrasensis occurs in reefal deposits (fauna p. 76) where it reaches a height of ca. 30 mm (Dubar, 1948). Ps. (Ps.) dentatus is a notable associate, as it is in non-reefal micrites in N. Africa and the Rhone Basin and in locally sandy condensed chamosite oolites of the Spinatum zone in Northamptonshire, Oxfordshire and Somerset (fauna p. 76) in which Ps. (Ps.) equivalvis is a relatively rare species compared to similar contemporaneous deposits further north. The maximum height of Ps. (Ps.) veyrasensis in the English occurrences is 24.5 mm (SM J40211) but an isolated specimen from the U. Pliensbachian of Normandy has a height of 74.5 mm (GPIG). Other than where indicated above $P s$. (Ps.) veyrasensis is a rare species. The limited available data suggests that it is more common in the southern parts of its geographic range.

8. INTERPRETATION OF ECOLOGY

$P_{s .}$ ($P_{s .}$) veyrasensis occurs in much the same sedimentary and faunal associations as Ps. (Ps.) dentatus thus a similar ecological interpretation can be applied (see p. 76). The fact that the species often co-occur might be adduced to be further evidence for the view (see p. 60) that they in fact constitute polymorphs of the same species. However, the fact that morphs attributable to Ps. (Ps.) veyrasensis are unknown after the U. Pliensbachian while those attributable to $P_{s .}\left(P_{s .}\right)$ dentatus are found in the M. Jurassic is difficult to interpret on this basis. Nevertheless the subtle ecological difference which presumably prevents inter-specific competition remains to be demonstrated.

9. FUNCTIONAL MORPHOLOGY

Since Ps. (Ps.) veyrasensis is identical to Ps. (Ps.) dentatus in almost all aspects of morphology a similar mode of life can be inferred (see pp. 76, 77). Whether they are considered as polymorphs or separate species, a functional explanation for the difference in number of plicae in the two forms is difficult to envisage. Any saving in weight leading to improved swimming ability through the lower number of plicae in Ps. (Ps.) veyrasensis would have been offset by the reduced shell strength and stiffness incurred through the longer plical wavelength. It seems more likely that the number of plicae had no functional significance but was controlled by a pleiotropic gene which also coded for a selectively significant physiological diflerence. Small differences in the mean number of ribs in closely related Recent species of Cardium have been accounted for in a similar way (Russfle, 1972).

10. ORIGINS AND EVOLUTION

Ps. (Ps.) veyrasensis almost certainly evolved from Ps. (Ps.) dentatus but since there is no evidence for heterochrony, speciation presumably involved a major change in the genome. There is a strong suggestion that Ps. (Ps.) veyrasensis arose sympatrically in the Rhone basin during the Angulata zone.

The apparent stenotopy of Ps. (Ps.) veyrasensis (see Section 8) combined with phyletic increase in height from 27 mm (Hettangian) to 74.5 mm (U. Pliensbachian) indicates the prevalence of ' K ' selection for increased trophic efficiency (Gould, 1977).

The post U. Pliensbachian extinction of the species almost certainly relates to the widespread development of unfavourable bituminous shale facies in the \mathbf{L}. Toarcian.

Subgenus ECHINOPECTEN Brasil 1895
Type species. OD; Brasil 1895, p. 12; Pecten barbatus J. Sowerby 1819, p. 53, pl. 231; Aalenian, Normandy.

AMENDED DIAGNOSIS

RV generally flatter than LV and bearing long, depressed spines. Jur. (Toar.-Baj.), Eu., S. Am.

DISCUSSION

Hfrtlein (1969: N372) contended that Ps. (Echinopecten) could be traced back to the Hettangian. This may be a result of the inclusion of 'Pecten' pollux D'ORBIGNY within the subgenus. Although the latter has spines on the right valve, the presence of similar ornament on the left valve is unlike the type species. There is no other evidence to suggest that the species are related and ' P. 'pollux is in fact almost certainly descended from a species of Chlamys, within which genus it is therelore included. The stratigraphic range of $P s$. (Echinopecten) is consequently herein regarded as Toarcian - L. Bajocian.

Pseudopecten (Echinopecten) barbatus (J. Sowerby 1819) Pl. 2, Figs. 15-18; text figs. 64-66

	Synonymy
1819	Pecten barbatus sp. nov; J. Sowerby, p. 53, pl. 231.
? 1833	Pecten barbatus J. Sowerby; Goldfuss, p. 48, pl. 90, fig. 11.
1850	Pecten barbatus J. Sowerby; D'Orbigny, v. 1, p. 284.
v*1850	Pecten evebus sp. nov; D'Orbigny, v. 1, p. 284 (Boule, 1910, v. 4. p. 68).
1858	Pecten barbatus J. Sowerby; Oppel, p. 420.
1867	Pecten barbatus J. Sowirby
1868	Pecten Coquandi sp, nov. Jaubert, p. 235.
1874	Pecten burbatus J. Sowerby; Dumortier, p. 199, pl. 4t, fig. 6, p. 310, pl. 42, fig. 5.
1886d	Pecten limpus sp. nov; De Gregorio, p. 21, pl. 13, fig. 7.
1886	Pecten barbatus J. Sowerby; Rothpletz, p. 36.
1893	Pecten cfr. barbatus J. Sowerby; Botto-Micca, p. 174.
1895	Pecten (Echinopecten) barbatus J. Sowerby; Brasil, p. 12.
1899	Pecten barbatus J. Sowerby; Grfppln, p. 120, pl. 12, fig. 5.
1911	Pecten erebus d'Orbigny; Roliler, p. 266.
1916	Aequipecten barbatus (J. Sowerby); Richardson, pp. 473, 497, 498, 513, 515.
1917	Aequpecten barbatus (J. Sowerby); Paris and Richardson, p. 521.
1927	Aequipecten barbatus (J. Sowerby); RichardSON, pp. 53, 57.
1929	Pecten (Aequipecten) barbatus J. Sowerby; Lanquine, pp. 199, 300.
1936	Aequipecten barbatus (J. SOwerby); Dechas EAUX, p. 58.
1950	Chlamys (Aequipecten) burbata (J. SOWERBY); Channon, p. 247.

Lectotype of Pecten barbatus J. Sowerby 1819 , p. 53, pl. 231 herein designated; BCM C 2281.1 (the specimen depicted in the lower two figures of J. Sowerby's pl. 231); Inferior Oolite (Aalenian/Bajocian/pars Bathonian), England (see p. 81). Paralectotype; BCM C 2281.2 (the specimen depicted in the upper figure of Sowfrby's pl. 231); also Inferior Oolite, England.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Orbicular, depressed, transversely striated; rays 14 , those upon one valve spinose; spines long, acute, depressed; ears nearly equal.

The spinose valve is the flattest; the striac upon it are sharp, and much elevated upon the sides of the rays, from whence they curve into the bases of the spines, of which there are about 5 to each ray. The rays upon the other valve are convex, equal in width to the space between them, and crossed by less elevated striae than those upon the spinose valve. The sides of both valves, near the ears, are perpendicular and neatly pectinated.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of Pseudopecten by the presence of long spines on the right valve.

Text fig. 64: Pseudopecten (Echinopecten) barbatus height/length.

3. AMENDED DESCRIPTION

Disc sub-orbicular in juveniles becoming sub-ovate, longer than high (text fig. 64), near the maximum height of 52 mm (ENSM). Umbonal angle very variable (text fig. 65) but increasing during ontogeny to produce concave dorsal margins. Disc flanks moderately high and ornamented with vertical striae (Pl. 2, Fig. 18).
Equilateral; inequivalve, left valve moderately convex, right valve almost flat.

Intersinal distance greater in left valve than right. Moderately large byssal notch in right valve becoming relatively smaller during ontogeny.

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Junction with hinge line 90°. Anterior auricle of right valve meeting disc at an acute angle. Posterior auricle of right valve and both auricles of left valve meeting disc at an acute angle. All auricles ornamiented with pronounced comarginal striae. Hinge line of right valve bearing dorsally directed spines up to 5 mm in length, spaced at intervals of 2-3 mm (Pl. 2, Fig. 17).

Text fig. 65: Pseudopecten (Echinopecten) barbatus - height/umbonal angle.

Exterior of both valves exhibiting 13-14 radial plicae, usually 14 on right valve, 13 on left. Plicae equal in width to sulci, angular on right valve, rounded on left. On left valve both plicae and sulci traversed by comarginal striae (Pl. 2, Fig. 16). On right valve only flanks of plicae bearing comarginal ornament but latter more pronounced than on left valve (Pl .2 , Fig. 17). At shell heights above about 20 mm plicae on right valve also ornamented with ventrally directed spines up to 10 mm in length, usually spaced at intervals of about 5 mm (Pl. 2, Fig. 17).

Plicae rectilinear in form on shell interior. Shell thickness moderate.

4. DISCUSSION

Of the two syntypes of 'Pecten' barbatus J. Sowerby in the BCM, the bivalved specimen (C2281.1) is herein selected as lectotype and the other specimen (C2281.2), a right valve seen from the interior, becomes, ipso facto, the paralectotype. The figure of 'P.' barbatus J. Sowerby; Goldfuss differs markedly from the species described in Section 3 by exhibiting 19 plicae and high H/L and H/UA ratios (1). This may, however, be due to a draughting error and in the absence of the original (apparently destroyed during the 2nd. World War) it is impossible to say whether Goldfuss' hypodigm differed from that of J. Sowerby, and thus whether his use of ' P.' barbatus should be excluded from the synonymy.
The sole observed syntype of ' P.' erebus D'Orbigny (MNO 2624A; Pl. 2, Fig. 15; 2) from the Bajocian, is a steinkern showing the impression of 14 plicae which are rectilinear in form. In spite of the absence of the diagnostic external spines this feature aligns ' P.' erebus with Ps. (Ec.) barbatus because no other Bajocian pectinids with plicae of this shape and number are known.

No supporting figure was provided in the erection of 'P.' Coquandi Jaubert. This species, from the Toarcian of Provence, was said to differ from ' P.' barbatus by the paucity of spines on some parts of the shell. Since this is a feature of
the left valve and early ontogenetic stages of the right valve in J. Sowerby's species, Jaubert's diagnosis is inadequate. In fact, LaNQuine (1929) has subsequently examined the latter's syntypes and pronounced them to be inseparable from J. Sowerby's species.

The figure of 'P.' limpus De Gregorio apparently depicts a specimen of Ps. ($E c$.) barbatus whose spines have been removed by abrasion.

5. STRATIGRAPHIC RANGE

Ps. (Ec.) barbatus first occurs, albeit rather rarely, in the Toarcian of Provence (Jaubert, 1868; Lanquine, 1929), the Rhone basin (Dumortier, 1874) and possibly N. Italy (De Gregorio, 1886 d). The earliest records appear to be from the Bifrons zone (L. Toarcian). Subsequently the species becomes locally common in the Aalenian and L. Bajocian. BM 66826, from the Laeviuscula zone, is the latest unequivocal zonally defined record of Ps. (Ec.) barbatus. However, Paris and Richardson (1917) considered that the specimen herein designated as lectotype (see Section t) was, by the evidence of the matrix, probably derived from the Sauzei zone of Dundry, near Bristol. It may therefore be that some of the many museum specimens labelled 'Inferior Oolite' from this and other localities in S. England are also derived from the Sauzei zone. It seems unlikely that any specimens are derived from later parts of the Bajocian.

6. GEOGRAPHIC RANGE

Ps. (Ec.) barbatus is unknown outside Europe. Within Europe (text fig. 66) its distribution is patchy and largely restricted to S. England and France. This is probably due to the localised development of the appropriate sedimentary facies (see Section 8). There is some evidence for a migration from an initial centre in S. France. Unequivocal Toarcian records are limited to the latter area. Subsequent records from the Opalinum zone of the Aalenian also include specimens from N. Italy (Botro-Micca, 1893) and Dorset (Richardson, 1927). However, Ps. (Ec.) barbatus did not spread into northern Europe in numbers until a later date, despite the widespread development of the appropriate sedimentary facies. Thus the Concavum zone marks the first occurrence of numerous specimens in Normandy (Brasil, 1895) while Ps. (Ec.) barbatus did not occur widely in S. England until the Discites zone of the L. Bajocian (Paris and Richardson, 1917).

7. DESCRIPTION OF ECOLOGY

In the Toarcian and Aalenian of Provence Ps. (Ec.) barbatus is found in coarse, occasionally sandy, ferruginous limestones containing chert nodules. Associated faunal elements are predominantly terebratulid and rhynchonellid brachiopods although gastropods and the bivalves Propeamussium (P.) laeviradiatum, Entolium (E.) corneolum, Plagiostoma, Gervillia, Modiolus, Gryphaea, Astarte, Pholadomya and Pleuromya also occur (Lanquine, 1929). Ps. (Ec.) barbatus occurs with a similar fauna (to which is added P. (P.) pumilum) in the thin, partly phosphatised, and locally conglomeratic limestones of the Aalenian (Concavum

Text fig. 66: Pseudopecten (Echmopecten) barbatus - European distribution.
zone) in Normandy (BrasiL, 1895). The species is absent from deposits of the same age in S. Germany which are developed as an expanded shale sequence passing upwards into sandstones and chamosite oolites.
In the Laeviusculazone (L. Bajocian) of Provence Ps. (Ec.) barbatus is quite common and occurs with a fauna similar to that described above (with the addition of Ctenostreon) in hard ferruginous limestones. The fossils are heavily corroded and phosphate coated, particularly at a hardground horizon where glauconite and limonite mineralisation has also taken place (Lanquine, 1929). Deposits of similar age in S. England (Discites-Sauzei zones) are developed as condensed ironshot sandy limestones locally containing exogenous limestone pebbles. Ps. (Ec.) barbatus is quire common and P. (P.) lueviradiatum is a frequent associate in a fauna much the same as that from Provence (Richardson, 1916). Contemporaneous deposits in S. Germany consist of condensed marly oolites from which Ps. (Ec.) barbatus has vet to be recorded. The species is also absent from the deep water pelagic limestones of the peri-Mediterranean region. The only records from the latter area are from Provence (see above) and the Aalenian of the Italian Alps (De Gregorio, 1886d; Botto-Micca, 1893) where a few specimens have been found in condensed deposits, probably formed on a submarine rise (fauna p. 31). The few other records of Ps. (Ec.) barbatus appear also to be from condensed facies.

8. INTERPRETATION OF ECOLOGY

Ps. (Ec.) barbatus frequently occurs with the stenotopic pectinid Propeamussium (P.) lacviradiatum and reference should be made to the analysis presented for this species (p . 31) for a complementary and more detailed interpretation of synecology.

The coarse-grained, condensed deposits in which Ps. (Ec.) barbatus usually occurs are indicative of high energy conditions with a low sediment input. Corroded fossils and local non-sequences provide evidence of active erosion, perhaps as a result of storms. The extensive mineralisation associated with slow deposition probably led to the formation of a firm
substrate and may also have promoted the local development of hardgrounds.

The associated benthic fauna is characterised by adaptations for stability in the face of high environmental energy. The adaptations of the epifauna are discussed on p. 31. Less common infaunal elements are characteristically deep burrowing bivalves (Pleuromya, Pholadomya) which were probably able to avoid the risk of exhumination by living below the base of storm erosion. Genera which probably lived semiinfaunally (Plagiostoma, Gervillia, Modiolus) can be adduced, by analogy with Recent analogues (Stanify, 1970), to have attained stability by virtue of a strong byssus.

The absence of P_{s}. (Ec.) barbatus from condensed oolites, such as are developed in the Aalenian and Bajocian of S. Germany, is probably because the shifting nature of such sediments created an unfavourable environment. The development of spinose ormament on the right valve was probably made at the expense of swimming ability (see Section 9), thus occupation of a mobile substrate would have rendered Ps. (Ec.) barbuttus extremely susceptible to sediment swamping. Moreover, loose ooliths would have probably afforded a poor anchorage for the spines. Deep water pelagic limestones were probably unfavourable to $P_{s .}(E c$.) barbattus as a consequence of their soupy nature at the time of deposition, leading to the danger of sediment swamping. The absence of $P_{s .}$ (Ec.) barbattus from expanded coarse-grained sequences (as in the Aalenian of S. Germany) indicates that the favourability of condensed coarse-grained sediments for the species lay in their low turbidity rather than high energy depositional environment.

The usual occurrence of Ps. (Ec.) barbatus in only moderate numbers with a high diversity fauna suggest that it was an equilibrium species (Levinton, 1970).

9. FUNCTIONAL MORPHOLOGY

The following features are paradigmatic for a bivalve living in a high energy environment with a reclining habit when adult.

1. Large adult size
2. Thick shetl
3. Strongly ornamented lower valve
4. Smooth upper valve
5. Low convesity

Of these, Ps. (Ec.) barbatus exhibits features 3, 4 and, to some extent, 5 . The strongly spinose and comarginally striated right valve represents, in bioeconomic terms, an efficient means of gripping the substrate in the high energy environments occupied by the species. Presumably environmental energy was never so high as to also necessitate the development of a large thick shell for stability whilst reclining.
The possibility that the spines might represent a 'snow-shoe' adaptation such as has been suggested for Spondylus in the Chalk by CARTER (1972) can be ruled out because the substrates occupied by $P_{s .}\left(E C_{\text {. }}\right)$ barbatus were almost certainly firm (see Section 8). Furthermore the relatively small size of the spines would have tended to localise rather than spread the weight of the shell. In fact P. WOODROOF (pers. comm., 1977) reports that Spondylus is more common in the Cretaceous in coarse grained firmground deposits rather than the typical Chalk lithology which is indicative of a soupy substrate at the time of deposition.

The moderately large juvenile byssal notch indicates that stability was attained through byssal fixation early in ontogeny. Spines are absent in the juvenile and the size at which these are first secreted $(\mathrm{H}: 20)$ may correspond to that at which current-generated overturning moments became too great for a byssus to be profitably employed.

Although the development of both dorsally directed spines on the hinge and ventrally directed spines on the disc must have been highly effective in providing stability against currents from a wide variety of directions, it must also have severely impaired swimming ability, such as might have been required to escape potential predators or sediment swamping (see Section 8). Any attempt to move dorsally (the 'escape response') or ventrally (normal swimming) would have lodged one or other set of spines even more firmly into the sediment and thus prevented 'take-off'. Moreover, even if the animal was able to rise from the sea-floor the spines would have still inhibited swimming by greatly increasing the frictional drag. Ontogenetic increase in umbonal angle indicates an attempt to prolong swimming ability beyond the juvenile stage. However, it seems likely that late in ontogeny attempted predation was resisted by a 'siege' policy to which the well developed plicae contributed by increasing the strength and stiffness of the shell.

10. ORIGINS AND EVOLUTION

The most likely ancestor for Ps. (Ec.) barbatus is Ps. (Ps.) veyrasersis. The only major difference between the species is the existence of spines on the right valve in the former. There is however no evidence in the form of ancestral allometry to suggest that the appearance of spines could have been due to the relatively simple process of heterochrony and transspecific evolution may therefore have involved a major change in the genome. There is a gap of three zones between the first and last respective appearances of the species and this suggests that speciation took place outside the main range of the ancestor (Europe) in accordance with the allopatric model.

No phyletic trends are apparent in Ps. (Ec.) burbatus atthough a rigorous assessment of the possibility of size change is precluded by the imprecise stratigraphic localisation of most museum specimens. The largest specimen (H:52, ENSM) is labelled 'Inferior Oolite' (Aalenian/Bajocian).

The post-Sauzei zone extinction of P_{s}. (Ec.) barbatus has no convincing deterministic explanation. Locally, as in the L. Bajocian of Provence, its disappearance is correlated with the onset of unfavourable marl deposition. However, at least in Britain, apparently suitable condensed Iacies persist into the U. Bajocian, where Ps. (Ec.) barbatus is unknown.

Genus SPONDYLOPECTEN Roeder 1882
Type species. M; Roeder 1882, p. 52; Pecten cf. erinaceus Buvignier; Roeder 1882, p. 52, pl. 2, figs. 4a-c; Oxfordian, Alsace.

AMENDED DIAGNOSIS

Sculptured with number of strong, usually rounded, radial plicae, spinose in some species; byssal notch deep; cardinal area of RV with narrow median groove (similar to Spondylus) which continues to ligamental pit; hinge of $R V$ with 2 prominent thick teeth which fit into corresponding sockets in LV. (Apparently some species are attached to tip of RV.) Jur. (Aalen. [?Hettang.]-Tithon.), Eu., Afr., Asia.

DISCUSSION

In his diagnosis Hertlein (1969: N364-365) stated that spines were restricted to the left valve in Spondylopecten. All the species here described seem to have had spines on both the left and right valves. Hertiein considered that the genus was restricted to reefs but the results of work presented herein suggest that this was not so. The stratigraphic and geographic range given by Hertiein is also extended herein.

Within the toothed Jurassic pectinids two distinct subgroups may be recognised. One has numerous rounded plicae bearing $2-4$ rows of spines while the other has fewer, more angular plicae bearing single rows of spines. There is no direct evidence to suggest that one group has evolved from the other and the fact that teeth have been acquired polyphyletically in various Cenozoic 'Chlamys' species (de Loriol, 1901; ArkKELL, 1935a) indicates that there are only grounds of convenience for uniting the two groups of toothed Jurassic pectinids within the same genus. They are herein separated at the subgeneric level; the former group being referred to S. (Spondylopecten) and the latter to S. (Pleisiopecten). Plesiopecten Munier-Chalmas was considered by Hertlein (1969) to be synonymous with Spondylopecten Rofder at the generic level. However, apart Irom the obvious differences in form of the type species (respectively typical and sole species of the two groups delineated above), it has been shown by Arkell (1935a) that Roeder's original conception of Spondylopecten did not include the type species of Plesiopecten (cf. p. 90). There are thus ample grounds for employing Spondylopecten and Plesiopecten as separate subgeneric categories.

Subgenus PLESIOPECTEN Munier-Chalmas 1887
Type species. M; Munier-Chalmas in P. Fischer 1887. p. 994; Pectmites subspinosus Schlotheim 1820, p. 223; U. Jurassic, S. Germany.

AMENDEL DIAGNOSIS

Spondylopecten with angular plicae bearing only one row of spines. Jur. (Aalen. [?Hettang.] - Tithon.), Eu., Afr., Asia.

DISCUSSION

Hfrtlein (1969) did not recognise Plesiopecten as a discrete entity and therefore provided no diagnosis.

Jurassic representatives of S. (Plesiopecten) cannot be subdivided so all are herein referred to one species, S. (Pl.) sut)spinosus.

Spondylopecten (Plesiopecten) subspinosus (Schlotheim 1820) Pl. 3, Figs. 1-5, 7, ?Fig. 6; text figs. 67-72.

	Synonymy
v-1820	Pectimites subspinosus sp. nov; Schlotheim,
? 1833	Pecten novemplcatus sp. nov; MUNSTER in GOldFuss, p. 45, pl. 100, fig. 3.
- 1833	Pecten subspinosus Schlotheim; Goldfuss, p. 46, pl. 100 , fig. 4 .
(?) 1850	Pecten novemplicatus Munster; d'Orbigny, v. 1, p. 257.
v* 1850	Pecten Hedonia sp. nov; D'Orbigny, v. 1, p. 284 (Boule, 1910, v. 5, p. 68, 1909, v. 4. pl. 20, figs. 15-17).
v* 1850	Lima Bellula sp. nov; d'Orbigny, v. 1, p. 371 (Boule, 1927, v. 16, p. 130, 1928, v. 17, pl. 6. fig. 1).
1850	Pecten subspirosus Schlotheim; d'Orbigny, v. 1, p. 373.
v* 1850	Pecten Orontes sp. nov; D'Orbigny, v. 1, p. 373 (Boule, 1927, v. 16, p. 131. 1928, v. 17, pl. 6, figs. 3, 4).
1852	Pecten subspinosus Schlotheim; Quenstrdt, p. 507 , pl. 40 , fig. $4 t$.
? 1855	Pecten aequiplicatus sp. nov; Terquem, p. 323, pl. 23, fig. 5.
18	Pecten Bouth
- 1858	Pecten subspmosus Schlotheim; Quenstedt, p. 500 , pl. 67, figs. 3, 4, p. 754, pl. 92, figs. 5, 6.
1862	Pectern shbspmosus Schlothein; Thurmann and Étallon, p. 251, pl. 35, fig. 4.
1862	Pecten Sarmerensis sp. nov; Étallon in ThurMann and Étail Lon, p. 259, pl. 36, fig. 11.
1863	Pecter subspmosus Schlotheim; Lycetr, p. 113, pl. 40, fig. 14.
(?) 1865	Pecter aequiplicatus Terquem; Terquem and Piette, p. 102.
18	Pectern stbspinosus Schlot
? 1878	Pecten lottii sp. nov; Gfmmellaro and Di Blasi in Gfmmellaro, p. 389, pl. 20, figs. 1, 2.
1878	Pecten Oromedon sp. nov: DE LORior, p. 160, pl. 22, fig. 21.
v 1883	Pecten subspmosus Schlotheim; Boehm, p. 612, pl. 67, figs. 40, 41.
1888	Pecten Bouchardi Oppel: Schlippe, p. 13t, pl. 2, fig. 13.

Synonymy

v* 1820 Pectinites subspmosus sp. nov; Schlotheim, p. 223.

Pecten novemplcatas sp. nov; MUNSTER in Gold. FUSS, p. 45, pl. 100, fig. 3. p. 46, pl. 100 , fig. 4 .
(?) 1850 Pecten novemplicatus MUNSTER; D'Orbigny, v. 1, p. 257. (Boule, 1910, v. 5, p. 68, 1909, v. 4, pl. 20, figs. 15-17). (Boule, 1927, v. 16, p. 130, 1928, v. 17, pl. 6. fig. 1). v. 1, p. 373.
(Boule, 1927, v. 16, p. 131. 1928, v. 17, pl. 6, figs. 3, 4). p. 507, pl. 40, fig. Ht. pl. 23, fig. 5.
1858 Pecten Bouchardi sp. nov; Oppel, p. 492.
v 1858 Pecten subspinosus Schlotheim; Quenstedt, p. 500, pl. 67. figs. 3, 4, p. 754, pl. 92, figs. 5, 6.

1862 Pecten shbspmosus Schlothein; Thurmann and Étallon, p. 251, pl. 35, fig. 4.
? 1862 Pecten Sarmerensis sp. nov; Étallon in ThurMANN and Etal lon, p. 259, pl. 36, fig. 11. pl. 40, fig. 14.
(?) 1865 Pecten aequiplicatus Terquem; Terquem and Piette, p. 102.
1867 Pecten stubspinosus Schlothlim; LaUBe, p. 10.
? 1878 Pecten lottii sp. nov; Gfmmellaro and Di Blasi in Gfmmellaro, p. 389, pl. 20, figs. 1, 2.
1878 Pecten Oromedon sp. nov; DE LOR1O1, p. 160, pl. 22, fig. 21.

1888 Pecter Bouchardi Oppel: Schlippe, p. 134, pl. 2, fig. 13.

1893	Chlamys subspmosus (Schlotheim); Siemir ADZki, p. 118.
1894	Pecten shbspinasus Schlotheim; de Loriol, p. +2 .
1901	Pecten (Plesiopecten) subspinosus Schlotheim; de Loriol, p. 105.
$\begin{array}{r} 1903 \\ \text { non } 190 t \end{array}$	Pecten shbspenosus Schlothein; Remes, p. 203. Chlamys cf. aequiplicata (Terquem); Cossmann p. 503 , pl. 16, fig. 15.
1904	Pecten (Plesiopecten) subspinosus Schlotheim de Loriol, p. 230, pl. 23, figs. 5, 6
1905	Pecten subspinosus Schlothfin; Peron, p. 215.
1905	Pecten lykosensis sp. nov; Krumbeck, p. 103, pl. 4, figs. 1a-c.
1905	Pecten (Chlamys) oromedon De Loriol; Kilian and Gufbhard, p. 817.
1910	Pecten subspinosts Schlotheim; Simionescu, p. 13, pl. 2, fig. 13.
1910	Plestopecten subspinosus (SChlotheim); Lissa Jous, p. 362, pl. 9, fig. 20.
1910	Chlamys (Aequipecten) Hedomia (D'Orbigny) Cossmann, p. 12, pl. 1, figs. 1+17.
1912	Chlamys (Aequipecten) Bouillerieri sp. nov Cossmann, p. 2, pl. 1, figs. 5, 6.
1916	Pecten (Plesiopecten) subspinosus SChlotheim DOUvillé, p. 74, pl. 9, figs. 6, 6 a.
1916	Aequipecten bouchardz (Oppel): Richardson, pp. +94, 505, 507, 508, 511 .
1916	Aequipecter bouchardi (Oppel); Paris and Richardson, p. 522.
1920	Pecten subspmosus Schlotheim; Faure-Mar. GUERIT, p. 56.
1923	Plesiopecten fusciacensis sp. nov; Lissajous, p. 163, pl. 30, firgs. 7, 7a, 8, 9 .
1926	Spondylopecten subspinosus (Schlotheim); StaeSCHE, p. 107, pl. 4. fig. 9.
v 1926	Spondylopecten Bouchardi (Oppel); StafsChe, p. 108 , pl. 4 , fig. 8.
1929	Aequapecten Bouchardi (Oppfl); LanQuine, p. 323.
1931	Pecten subspmosus Schlotheim; Yín, p. 122.
1932	Spondylopecten subspinosus (Schlotheim); Frentzen, p. 56.
1935a	Plesiopecten subspinosus (Schlotheim); Arkell p. 364, pl. 53, figs. 4, 5.
? 1936	Aequpecten aequiplicatus (Terquem); DechasEAUX, p. 41 .
1936	Spondylopecten Hedoma (D'Orbigny); DechasEAUX, p. 65.
1936	Spondylopecten Bouchardi (Oppel); Dechas EAUX, p. 65.
v 1936	Spondylopecten subspmosus (Schlotheim); DF Chaseaux, p. 66. pl. 8, fig. 9.
1938	Plesiopecten subspinoshs (Schlothlim); Weir, p. 50 , pl. 3 , fig. 18.
1952	Chlamys (Plesiopecten) subspinosa (SChlothein); Cox, p. 18, pl. 1, figs. 9-12.
1964	Plesiopecten bouchardi (OPPEL); WELINHOHER, p. 39, pl. 1, fig. 27.
? 1973	Chlamys (Aequipecten) acquiplicata (Terquem); 1.ENTini, p. 27, pl. 15, fig. 3.
* 1975	Spondylopecten subspinosus (Schlotheim); Y'Am AN1, p. 59, pl. 3, figs. 3-6.
	Lectotype of Pectinites subspinosus Schlot HEM 1820, p. 223 designated herein; HM MB-M. 25.4; Pl. 3, Fig. 1 herein; H: 13.5, L: 13.5, UA: 90, PL: 12; Hornstein (?Kimmeridgian), Grumbach bei Amberg (Franconia). Paralectotypes; HM MB-M. 25.1-3,5-7 (6 specimens).

p. 42 . DE LORIOL, p. 105.
Pecten subspmosus Schlothein; Remes, p. 203. p. 503 , pl. 16, fig. 15.

De Loriol, p. 230, pl. 23, figs. 5, 6.
1905 Pecten subspinosus Schlothfin; Peron, p. 215. Pecten lykosensis sp. nov; Krumbeck, p. 103, pl. 4 , figs. la-c.
Pecten (Chlamys) oromedon DE LORIOL; KILIAN Pecten subspinosus Schlotheim; Simionescu, p. 13, pl. 2, fig. 13.

Plestopecten subspinoshs (SChlotheim); LissAJous, p. 362, pl. 9, fig. 20. Cossmann, p. 12, pl. 1, figs. 14-17.

Cossmann, p. 2, pl. 1, figs. 5, 6. Douvilile, p. 74, pl. 9, figs. 6, 6a.

Richardson, Aequipecter bouchardi (Oppel); Parls and ardson, p. 52. GUERIT, p. 56.
Plesiopecten fusciacensis sp. nov; Lissajous, p. 163, pl. 30, figs. 7, 7a, 8, 9.

SCHE, p. 107, pl. 4, fig. 9. p. 108 , pl. 4 , fig. 8.
$1931 \begin{aligned} & \text { P. } 323 . \\ & \text { Pecten subspmosus SChlotheim; Yín, p. } 122,\end{aligned}$
1932 Spondylopecter subspinosus (SChLotheim); Frentzen, p. 56. p. 364, pl. 53, figs. 4, 5.

1936 Aequapecten aequiplicatus (Terquem); Dechaseaux, p. 41. EAUX, p. 65.
Spondylopecten Bouchardi (Oppel); Dechas EAUX, p. 65 Chaseaux, p. 66, pl. 8, fig. 9. p. 50, pl. 3, fig. 18. Cox, p. 18, pl. 1, figs. 9-12. p. 39, pl. 1, fig. 27.
iplicata (Terquen); N., p. 27.pl. 15, lis. 3.

AN1, p. 59, pl. 3, figs. 3-6.
Lectotype of Pectinites subspinosus SchlotHerm 1820, p. 223 designated herein; HM L: 13.5, UA: 90, PL: 12; Hornstein (?Kimmeridgian), Grumbach bei Amberg (Fran-3,5-7 (6 specimens).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

, Mehrere Exemplare in Hornstein, gleichfalls von Amberg (I2 Ex.).
In der Form dem vorhergehenden ziemlich ähnlich nur viel kleiner, und höchstens nur einen Zoll im Durchmesser erreichend, mit verhältnismäßig ziemlich breiten, mit gekörnten Querstrichen versehenen Ohren. Von flacherer Wölbung als der vorhergehende. Beyde Hälften gleichförmig gewölbt, die Rippen stark hervorspringend, spitzwinklich zulaufend, und mit kleinen Dornen besetzt. Diẹ sehr feinen eng zusammen stehenden erhabenen Querrippen sind nur in den Zwischenfurchen sichtbar, und veranlassen, daß man Einkerbungen oder vertiefte Punkte in den Zwischenfurchen wahrzunchmen glaubt. Ein darunter befindliches zum Theil verkieseltes Exemplar ist unter den Hornsteinversteinerungen merkwürdig. Er scheint in der dortigen Gegend ziemlich häufig zum Vorschein zu kommen.'

2. AMENDED DIAGNOSIS

As for diagnosis of subgenus (p. 84).

Text fig. 67: Spondylopecten (Plesiopecten) subspinosus height/length.

3. AMENDED DESCRIPTION

Disc sub-orbicular at all ontogenetic stages (text fig. 67), maximum height 27 mm (BM L68240). Umbonal angle very variable (text fig. 68) but increasing slowly during ontogeny to produce slightly concave dorsal margins. Disc flanks high.

Equilateral, umbones projecting slightly beyond hinge line; equivalve, convexity variable, moderate to high, increasing with approximate isometry (text fig. 69).

Intersinal distance greater in left valve than right. Moderate byssal notch in right valve becoming relatively smaller during ontogeny.

Auricles well separated from disc, moderate in size, anterior largerthan posterior. Anterior auricle of right valve

Text fig. 68: Spondylopecten (Plesiopecten) subspinosus height/umbonal angle.
meeting hinge line and disc at 90°, anterior auricle of left valve meeting hinge line and disc at an acute angle. Posterior auricles of both valves meeting hinge line and disc at an acute angle. All auricles sloping from umbo towards opposite valve (Pl. 3, Fig. 4) at a maximum angle of 20°. Anterior auricle of right valve ornamented with four radial costae.

Text fig. 69: Spondylopecten (Plesiopecten) subspinosus - convexity/height.

Exterior of both valves ornamented with between 10 and 13 angular radial plicae (text fig. 70), equal in width to sulci; usually one more plica in right valve than left. Plicae poorly defined near anterior and posterior margins. Large specimens may develop additional intercalary plicae (Thurmann and Étallon, 1862; Yin, 1931). Crests of plicae bearing ventrally directed spines up to 2 mm in length and spaced at intervals of about 2 mm (Pl. 3, Fig. 3). Sulci traversed by strong comarginal striae (Pl. 3, Fig. 3) fading out on the plical flanks and towards the ventral margins of large specimens (Pl. 3, Fig. 7). Plical cross-section rectilinear and reduced in amplitude on interior of shell (Pl. 3, Fig. 5); shell thickness high.

Cardinal area of right valve bearing two peg-shaped crura (Pl. 3, Fig. 2), anterior larger than posterior and vertically striated; corresponding sockets in left valve.

Text fig. 70: Spondylopecten (Plestopecten) subspmosus - frequency distribution for number of plicae on right salve.

4. DISCUSSION

The 12 syntypes originally described by Schl otheim (1820) as 'Pectinites' subspinosus were subsequently added to such that the Schlotherm collection (HM) now contains 18 specimens under this specific name (Dr. J. Helvs, pers. comm., 1978). The specimens are variably preserved and it is not certain which constitute the syntypes. However, all appear to be referable to the species described in Section 3 and this fact together with the unambiguousness of the description (see Section 1) can leave little doubt as to Schlotherm's hypodigm. Accordingly one of the 18 specimens (HM MB-M. 25.4; Pl. 3, Fig. 1) is herein designed as lectotype and a further 6 specimens (HM MB-M. 25.1-3,5-7) are selected as paralectotypes.
The single observed type of 'Lima' Bellula d'Orbigny (MNO 3737) and the sole observed type of 'P.' Hedonia d'Orbiguy (MNO 2421) with 12 and 13 plicae respectively, together with the two syntypes of ' P.' Orontes d'Orbigny (MNO 3766) with 11 and 13 plicae, all fall within the range of plical variation in S. (Pl.) subspmosus and can be distinguished on no other count. Similarly, 'P.' lykosensis Kruy. BEuK and 'Chlamy's' ('Aequipecten') Bouillerieri Cossmann. both with 11 plicae, cannot be accorded a specific distinction.

Although the figure of ' P.' aequiplicatus Tfrempus shows 15 plicae and is similar to Psendopecten (Ps.) vervasensis the text specifies 12 plicae and spinose ornament as is characteristic of S. (Pl.) subspinosus. Some subsequent applications of Teruuev's specific name by authors who may have examined the type material appear to bear out the latter assignation (e.g. Lentini [1973] for forms with 10 plicae and Dechaseaux [1936] for forms with 12 plicae and spines). However, CossMANN's (1904) usage is for a form with 16 plicae which is probably referable to Ps. (Ps.) dentatus and it is thus conceivable that ' P.' dequaplicatus Terevem could represent the extremes of variation in the latter species. Unfortunately discussion of the taxonomic position of ' P.' aequplicatus is hampered by
the fact that the presence or absence of the cardinal crura diagnostic of Spondylopecten has yet to be demonstrated in either the specimens cited in the bibliographic references above or in museum specimens from comparable horizons (Lias) examined by the author (however see Section 5). For the same reason the taxonomic position of ' P.' novemplicatus MONSTRR (a species founded on a fragmentary specimen from the Lias which must have originally possessed about 12 plicae) is also uncertain.
'P.' Bouchardi OppFl was originally erected for forms differing from typical S. (Pl.) subspinostus only by their greater convexity and stronger plicae. Staesche (1926), in maintaining a specific distinction, added that such forms were also characterised by wider sulci lacking in comarginal ornament but failed to recognise that all four features are correlates of relatively large size, as is clearty illustrated by his figured specimen (H: 20.9). 'Pl.' fusciacensis Lissajous, erected for large specimens ($\mathrm{H}_{\text {max }}$: 27) lacking comarginal ornament in the sulci, is similarly inseparable from S. (Pl.) subspinosus and since the development of intercalary plicae appears to be another correlate of large size (Yin, 1931), 'P.' Sarmerensis Etalton cannot be accorded a specific distinction on this basis.
'P.' Oromedon de Leriol only differs from S. (Pl.) shbspmosus by its mose rounded plicae. This is almost certainly the result of abrasion.
' P.' lottii Gemmellaro and Di Blasi was erected for a single specimenfrom the L. Lias resembling S. (Pl.) subspinosus in its convexity and Ps. (Ps.) veyrasensis in its number of plicae (15). Stiafs hf (1926) has suggested that it may represent a transitional form between the two species (but see Section 10).

5. STRATIGRAPHIC RANGE

None of the small Lias pectinids with approximately 12 plicae whose greater convexity and more angular plicae merit a distinction from Ps. (Ps.) veeyrasensis, is seen from the interior. It is therefore impossible to say whether the cardinal crura diagnostic of Spondylopecten are present and thus whether the specimens in fact constitute examples of S. ($P l$.) subspinosuts. Some of the specimens are devoid of shell (e. g. GPIG 868-4; Pl. 3, Fig. 6) but enough with the remmants of plical spines (c.g. BMI L30494) exist to suggest strongly that all are referable to S. (Pl.) subspinosus. Of these, the earliest specimen is from the Hettangian (GPIG). Bibliographic records of possibly conspecific specimens (see Section 4) also extend back to the Hettangian in the E. Paris Basin (Terqueu, 1855; Terquem and Piette, 1865; Dechafeaux, 1936) and the L. Lias in Sicily (Gemuellaro, 1878; Lentivi, 1973). However, there can be no doubt that if it exists at all, S. (Pl.) sutbspinosus is a rare species betore the M. Jurassic.

Unequivocal Aalenian records are limited to one specimen from the Opalinum zone (BM L41933) and another from the Murchisonae zone (BM unnumbered) of Dorset. However, the species is quite common by the U. Bajocian and in suitable facies (see Section 8) it is found thus in all stages to the U. Tithonian (Bofhm, 1883; Remes, 1903; Faurr-Marguerit, 1920; Yis, 1931).

Text fig. 71: Spondylopecten (Plesiopecten) subspmosus - World distribution (Callovian reconstruction).

6. GEOGRAPHIC RANGE

In the M. and U. Jurassic S. (Pl.) subspinosizs has a geographic range extending south from Europe along the southern shores of Tethys to include about 50° of palaeolatitude (text fig. 71).

Within Europe (text fig. 72) L. Jurassic records are scattered but widespread. However in the M. and U. Jurassic S. (Pl.) subspinosus is restricted to those areas which lay north of the Tethyan deep water zone and more locally in the U. Jurassic its numbers are strongly correlated with the development of coral reefs (see Section 8). Nevertheless, only three specimens are recorded by Arkfll (1935a) from apparently suitable coralliferous facies in Cambridgeshire and Yorkshire and this suggests that N. England marked the northern limit of the geographic range of S. (Pl.) subspinosus.

7. DESCRIPTION OF ECOLOGY

Potential early records of S. (Pl.) subspinosus (see Sections 4, 5) from the Hettangian of Luxembourg (Terquem, 1855) and E. France (Terquem and Piette, 1865; Dechaseaux, 1936) are derived from sandstones containing abundant gastropods and the bivalves Cardinia and Lima together with rarer examples of Chlamys (Ch.) textoria, Ch. (Ch.) valoniensis, Pseudopecten (Ps.) equivalvis, Entolitm (E.) lunare and Camptonectes (C.) subulatus.
In the U. Bajocian (Garantiana and Parkinsoni zones) of Somerset and Dorset, S. (Pl.) subspinosus occurs quite commonly in brown ferruginous limestones, reaching a maximum height of 23 mm (BM LS45528). The associated fauna is abundant and diverse, comprising the bivalves Pseudomonotis, Limatula, Trichites, Trigonia, 'Ostrea', Pro-

Text fig. 72: Spondylopecten (Plesiopecten) subspinosus - European distribution.
tocurdia and a variety of pholadonyoids together with terebratulid brachiopods, in- and epifaunal gastropods, infaunal echinoids and rare corals (Richardson, 1917).

Sediments of Aalenian/Bajocian age in Normandy also contain S. (Pl.) subspinosus but the exact horizon and facies is unknown.

Although widespread, the species does not occur commonly anywhere in Europe during the Bathonian. Rare specimens reaching a maximum height of 27 mm are recorded from the Recrocostatum zone (Aspidoides zone of Arkell, 1956) of the Mâconnais in a condensed ammonite bed (Lissajous, 1923).
S. (Pl.) subspinosus occurs commonly in the condensed ferruginous oolites of the Macrocephalus zone (L. Callovian) in S. Germany and Switzerland (Opple, 1858; Schlippe, 1888; Stafsche, 1926). The maximum size attained is 21 mm (GPIT). Deposits of the same age in Cutch (tndia) are developed as limestone/shale alternations containing common S. (Pl.) subspinosus in association with S. (S.) palinurus and the 'coarse' and 'intermediate' phenotypes of Ch. (Ch.) textoria. Elsewhere the species is rare in the Callovian but it returns in large numbers in the Oxfordian, particularly to E. France and Switzerland where the stage is frequently developed in reefal facies. S. (Pl.) subspinosus is particularly abundant in the U. Oxfordian of the Yonne where, in addition to the framework of corals and Diceras, there is an abundant associated fauna including the coral-inhabiting S. (S.) palinurus, S. (S.) subpunctatus, Camptonectes (C.) virdunensis and Radulopecten inequicostatus together with the 'coarse' phenotype of Ch. (Cb.) textoria (Perov, 1905). However, S. (Pl.) subspinoszs also occurs quite commonly in the L. Oxfordian of the same region which is developed as marls and non-reefal limestones. In similar sediments in the Transversarium zone (U . Oxfordian) of tsere it reaches a height of 27 mm (BM L68420).
S. (Pl.) subspinosus and other species of Spondylopecten are absent from the M. and U. Oxfordian reefs of the Oxford area yet coral/Nerinea-rich facies at a similar palacolatitude (text figs. 71, 72) in Poland contain common examples of S. (Pl.) subspinosus together with S. (S.) palinums, S. (S.) globosus, R. inequicostatus and Ch . (Ch.) textoria (Siemiradzki, 1893).
S. (Pl.) subspinosus is absent from Kimmeridgian coral/Diceras facies in the Jura (e. g. Contejean, 1859) and is likewise absent from coral patch reefs of the same age at La Rochelle (Charente Maritime). Other reef dwelling pectinids are extremely rare at the latter locality although the bivalve fauna is otherwise rich (HALLAM, 1975b).

Tithonian records of S. (Pl.) subspinosus are restricted to localised reefal deposits. Thus the species is found in the L. Tithonian of Nattheim (Frfntzen, 1932) and Neuburg (Y'aman1, 1975) in S. Germany; the U. Tithonian of Stramberg in Czechostovakia (Boenv, 1883; Remes, 1903), Isère (Faure-Marguerit) and Languedoc (Yin, 1931) in S. France, and also undifferentiated Tithonian in S. France (Kilian and Gueshard, 1905) where it reaches a maximum height of 19 mm . The associated fauna is in all cases rich and diverse and dependant on the locality is made up of various combinations of the reef-dwelling pectinids mentioned above (to
which is added S. (S.) cardinatus) together with Plagzostoma, Trichites, Gervillella, Diceras and Arctostrea, pleurotomariid and nerineid gastropods, thick shelled terebratulid brachiopods, cidaroid echinoids, crinoids, corals and calcareous sponges. In what are otherwise faunally indistinguishable facies in the L. Tithonian of Sicily, S. (Pl.) subspinosus is absent (Gemmellaro and Di Blasi, 1874; Gemmellaro, t875).

8. INTERPRETATION OF ECOLOGY

Both Hertlein (1969) and Hallam (1976) consider Spondylopecten to be an exclusively reef-inhabiting genus. While in the case of S. (Pl. .) subspinosus it is undoubtedly true that the species occurs most abundantly in reefal deposits, the data of Section 7 provide good evidence that for at least the preTithonian parts of its range S. (Pl.) subspinosus was not confined to this habitat. All pre-Oxfordian records appear to be from faunally diverse level bottom situations, usually accompanied by fairly high environmental energy. Such facies also contain the largest representatives of the species. The occasional presence of corals and reef-associated Chlamys and S. (Spondylopecterr) species might be held to indicate that S. (Pl.) subspinosus was derived from unexposed reefs nearby. However, more coral-rich horizons (e.g. Upper Coral Bed, U. Bajocian, S. England) containing numerous examples of S. (Spondylopecten) are noticeably lacking in S. (Pl.) subspinosus. Moreover, undoubted reefs, such as those of the U. Pliensbachian in Morocco (Dubar, 1948) and the L. Bajocian in E. France (Hallam, 1975b) were not colonised. In the former case the absence of the reef-associated 'coarse' phenotype of C b. (Ch.) textoria (S. (Spondylopecten) had yet to arise) could indicate that a general competitive exclusion by the common Pseudopecten, Lithiotis and Pachyrisma, was in operation. However, in the latter case no such process can be invoked as these forms are absent and the "coarse" phenotype of Ch. (Ch.) textoria, a frequent associate of S. (Pl.) shbspinosus at later horizons, is abundant. Nevertheless, with respect to a general synthesis of habitat range in the Bajocian, it must be admitted that the absence of of S. (Spondylopecten) species (which also occur with the 'coarse' phenotype of $C b$. (Ch.) textoria at later horizons) suggests that some special feature of the L. Bajocian reets in E. France made them unfavourable to Spondylopecten as a whole (see below). Even so, given the foregoing evidence the onus of proof must now pass to those who would still claim that Spondylopecten was an entirely reef-restricted genus.

Reefs were first undoubtedly colonised in the Oxfordian although level bottom environments were also inhabited. Subsequently in the Tithonian, reefs apparently became the sole hathtat. The diverse fauna of byssate (S. (Spondylopectern), Ch. (Ch.) textoria, Trichites, Gervillella) and cemented (Diceras, Arctostrear) bivalves attests to the abundance of hard substrates while the luxuriance of the coral growth indicates that the sea was shallow, warn, well oxygenated and of low turbidity:

The absence of S. (Pl.) subspinosus from some U. Jurassic reefs within the latitudinal range of the species could perhaps be explained by their particular coral fauna and resultant structure. Personal examination of the in situ L. Kimmeridgian patch reefs near La Rochelle, in which other species of

Spondylopecten are also extremely rare, reveals that they are dominated by sheet and dome-like masses of Isastrea and Thamnasteria which produce a very dense structure. (The same is true of the L. Bajocian reefs in E. France - see above.) As such they could have provided relatively few sites for the kind of nestling habit inferred for Spondylopecten (see Section 9). By contrast, at least in the L. Tithonian reef at Nattheim, there is a dominance of the arborescent Thecosmilia (Frentzen, 1932) which could have afforded abundant nestling sites for S. (Pl.) subspinosus and the other common species of Spondylopecten. In addition to its absence at La Rochelle, S. (Pl.) subspmosus is, however, also lacking in the Oxfordian reefs around Oxford and these reefs, apparently with in the latitudinal range of S. (Pl.) subspinosus, contain abundant Thecosmilia. Possibly this apparent anomaly may yet be explained as a consequence of some overriding large-scale control on distribution (e. g. environmental stability - see below). However, the presence of S. (Spondylopecterr) species and the absence of S. (Pl.) subspunosus from the L. Tithonian reefs in Sicily casts further doubt on the importance of general reef structure in determining the occurrence of Spondylopecten, and the extreme rarity of S. (S.) palinurus at Nattheim also suggests that forms were subject to a more specific control (see p. 96). Unfortunately there are no modern reef-dwelling morphological analogues of S. (Pl.) subsponosus to allow a comparison in micro-habitat preference. The pectinid fauna of Recent reefs appears to be dominated by Chlamys species of low convexity (W'aller, 1972b).

From the foregoing one may reach the speculative conclusion that S. (Pl.) subspinosus gradually evolved from being a member of level bottom communities into one confined to the reef habitat and that within the latter there may have been a preference for the more open structures produced by branching corals. Possibly some unpreserved softbodied organism afforded the same niche prior to the occupation of coral reefs since the small convex shell would have been poorly suited to life on the sea floor (see Section 9). The usual occurrence of S. (Pl.) subspinosut in moderate numbers in a high diversity fauna suggests that it was an equilibrium species (Levintov, 1970).

The absence of S. (Pl.) subspinosus from fine-grained deposits such as the pelagic limestones of the M. \& U. Jurassic in the Tethyan region and the phyllosilicate clays of the Oxfordian and Kimmeridgian in N. Europe suggests strongly that the species was intolerant of turbid waters and soupy substrates. While S. (Pl.) subspinosus does occur in limestone/shale (Callovian, Cutch) and limestone/marl (L. Oxfordian, Yonne) sequences, it seems highly likely that the species was restricted to relatively coarse-grained limestones.

The rarity of S. (Pl.) subspinosus in the Oxfordian coralliferous deposits of central and northern England (see Section 6) may be simply the result of a temperature dependence. However, HAllam (1975a) has proposed a multi-component explanation based on stability theory (SAVDFRS, 1968, 1969) for the N/S provinciality exhibited by a variety of Jurassic taxa and it could thus be that the general environmental instability resulting from shallower seas, greater seasonal fluctuations in temperature and the more frequent incidence of storms caused the relatively stenotopic S. (Pl.) subspinosus to be excluded from high latitudes.

9. FUNCTIONAL MORPHOLOGY

The small adult size and relatively large byssal notch of S. (Pl.) subspinosus indicate that the species could have remained byssate throughout ontogeny. However, the thick, strongly inflated shell is non-paradigmatic for a free-swinging mode of life and in the absence of any downward slope of the hinge line from posterior to anterior, the high convexity of the right valve renders the species poorly adapted to tight fixation on a single planar surface. Suitably pitted surfaces could have provided nestling sites for the right valve but the similarity in shape and ornament of the valves suggests that both were exposed to the same environment. Thus it is proposed that S. ($P l$.) subspinosus lived tightly fixed between two or more surfaces with the ventrally directed spines gripping the substrate and adding to the effect of a heary shell and byssus in providing stability against the actions of currents, waves and predators. Under such circumstances effective fixation could only have been achieved by a close matching of shell convexity to width of 'cavity'. This might have resulted from either of two strategies:

1. Developmental flexibility in convexity to suit the mic-ro-habitat in which the spat initially settled.
2. Selection by the spat of micro-habitats of appropriate size and shape.

Some evidence for the former is provided by the variation in convexity of S. (Pl.) subspinosus. However, it cannot yet be said whether this is a positively adaptive trait brought about by developmental flexibility. Some evidence for the latter strategy is provided by the occurrence of S. (Pl.) subspmosus with other Spondylopecten species, implying that selection of micro-habitats of species-specific size and shape prevented competition for space and thus allored coexistence. In this respect it is worth noting that of the total of only three features which aid in distinguishing Spondylopecten species, one is convexity. Since Spondylopecten usually occurs in reefs there is the possibility that the growth forms of different coral species provided the appropriate crevices, fissures etc. for each species of Spondylopecten (but see p. 96). For S. (Pl.) subspinosus it is likely that some softbodied organism played the same role during the early part of its statigraphic range (see Section 8).

Further evidence for the vital role of convexity in the Spondylopecten mode of life is provided by the impressive array of coadaptations which high convexity has necessitated. Departure from the low convexity form of most pectinids raises the problem of interpenetrant umbones when gnomonic growth of the shell results in a logarithmic spiral of more than half a revolution (STASEL, 1963). In the apparent impossibility of interumbonal growth or lateral displacement of the umbones in the Pectinidae, the problem seems to have been solved in Spondylopecten by the development of teeth which effectively lift the hinge out of the plane of commisure and thus prevent umbonal friction (text fig. 73). This has the disadvantage of tending to split the ligament upon shell closure (text fig. 74) thus a further adaptation, downward growth of the auricles towards the opposite valve, is required to maintain contact between the valves (Pl. 3, Figs. 4, 8).

In contrast to the above interpretation, Staesche (1926) contended that thickness, convexity, prominent plicae and
th ut t th or funt thonil substitute (tasek, 19\%3)

1t:1 teeth (.. opondy $10-$ pecten)

Text fig. 73: Articulation in high convexity shells (schematic).
cardinal teeth were all strengthening adaptations to the turbulent environment of a reel. However, Stavley (1970) has shown that the most exposed of modern shores are colonised by relatively thin-shelled, unornamented bivalves, thereby implying that water movements even of a violent kind are insufficient to warrant the development of a strong shell. Similarly Staeschf's suggestion that the above features are strengthening adaptations directed against crab predation in the reefal environment can be ruled out because there is no evidence to suggest that this is any more of a problem in reets than in level-botton communities, where smooth, flat, thinshelled, edentulous pectinids also wecur.

Text fig. 74: Schematic section of umbonal region in Spondylopecten with probable condition of outer ligament upon valve opening and closure.

It is unlikely that the plicae could have added any useful strength and stiffness to that provided by the thick shell and it is more probable that they served to increase purchase upon the substrate (see above).

The heavy shell, moderate to high convexity and prominent ormamentation render it unlikely that S. (Pl.) subspinosus could have been anything more than a very inefficient swimmer.

10. ORIGINS AND EVOLUTION

On the basis of its overall similarity, the most likely ancestor for S. (Pl.) subspinosus is Pseudopecten (Ps.) veyrasensis. The acquisition of cardinal teeth, spinose ornament and a different pattern of plical variation ($10-13 \mathrm{cf} .12-15$ plicae) by S. (Pl.) subspinosus cannot be attributed to heterochrony acting upon ancestral allometries so it is likely that trans-specific evolution involved a profound rearrangement of the genome. Stafochr (1926) considered that 'Pecten' lottii Gfmmellaro and di BLASI (see Section 4) represented a transitional stage between Psendopecten and Spondylopectern. However, the species is only known from one example (from an unspecified horizon in the L. Lias) thus ' P.' lottii is more reasonably to be thought of as an extreme variant of either S. (Pl.) subspinosus or Ps. (Ps.) deyrasenses rather than an indicator of gradual evolution between the species.
There appear to be no phyletic changes within S. (Pl.) subspmosus. The range of plical variation remains constant; forms with 10 and 13 plicae being known from the M. (e. g. BM 65939 and MNO 242t) and U. (e.g. MNP S3842 and MNO 3766) Jurassic. Apparent phyletic oscillations in maximum height from 23 mm (U. Bajocian) to 27 mm (U. Bathonian) to 21 mm (L. Callovian) to 27 mm (U. Oxiordian) to 19 nm (Tithonian) could well be related to the environment (sec Sec tion 8).

Subgenus SPONDYLOPECTEN s. s.
(synonym Cardinopecten Rollier 1904)

ORIGINAL DIAGNOSIS

(see p. 83 for the reason for the inclusion of this section)
,Das interessanteste an diesen Formen ist jedenfalls das Schloß, und darüber geben meine verkieselten Exemplare
guten Aufschluß. Auf der rechten Klappe sieht man unter dem wenig gewölbten Wirbel eine verhältnismäfig breite Area, die durch die Bandgrube wie bei Spondyluts gespalten ist.

Neben der Bandgrube liegen unter der Area jederseits Zähne und zwar ist der vordere bedeutend größer, vorausgesetzt, dafs der hintere nicht teilweise abgebrochen ist, was bei meinen Exemplaren immerhin möglich wäre.

Quenstedt hebt diese Ungleichheit der Zähne jedoch auch für seinen Pecten globosus..., auf den ich gleich noch zu sprechen komme, hervor, deshalb scheint sie also normal zu sein. Der große Vorderzahn ist löffelförmig in die Höhe gekrümmt und zeigt auf der Area zugekehrten Seite senkrechte, parallel

Streifen; der Hinterzahn ist klein und undeutlich, er erhebt sich kaum über die Area. Außerdem ist der gerade Schloßrand, vorn der Oberrand des Ohres, mit feinen senkrechten Kerben versehen. Von der linken Klappe besitze ich leider kein ganz erhaltenes Schloß; ich habe nur die senkrechten Kerben auf dem Schlofłrande constatiren können." (relevant extract from description of Pecten (Spondylopecten) cf. erinaceus Buvignifr; Roeder, 1882)

AMENDED DIAGNOSIS

Spondylopecten with rounded plicae bearing 2-4 rows of spines. Jur. (Aalen. - U. Tithon.), Eu., Afr., Asia.

Text fig. 75: Spondylopecten (S.) palinurus/subpunctatus - frequency distribution for number of plicae.

DISCUSSION

In general form all members of S. (Spondylopecten) are very similar. It is possible therefore that the sub-groups identified below could be polymorphs of the same species. However, with the apparent impossibility of detecting polymorphism in the fossil record it seems preterable to treat them as separate species.

In measured museum specimens the range of plical variation in S. (Spondylopecten) is from 18-71. Within the range 18-36 plicae there is an essentially bimodal distribution grouped around modes at 21 and $30 / 32$ plicae with an intervening trough at 26 plicae (text fig. 75). Individuals in the former group (herein referred to S. (S.) palinurus) also seem to differ from those in the latter (herein referred to S. (S.) subpunctatus) by their lower convexity (text figs. 77, 84) and in the possession of four rather than two rows of plical spines. The single known specimen with 26 plicae (MNP) is abraded but apparently originally bore four rows of spines. It is therefore considered to indicate the upper limit of plical variation in the former group.

Within the first group later populations differ in the mode and range of plical variation (text fig. 79) and in convexity (text fig. 77). While there can be little doubt of an ancestor-
descendant relationship some authors would consider such differences worthy of a specific separation. However, apart from the difficulties of objectively defining the species there is no evidence that separate lineages existed at any one time. In fact there is some evidence (see p. 97) that earlier and later populations were linked by gradual phyletic evolution. Thus following the rationale adopted in this work, the earlier and later populations are herein considered to belong to the same species. Similar reasoning can be applied to the group of forms referred to S. (S.) subpunctatus in which later samples differ in the mode and range of plical variation (text fig. 86) and in convexity (text fig. 84) but in which there is no evidence for coexisting lineages, yet a certain amount for phyletic gradualism (see p. 102).

The paucity of available museum specimens renders it difficult to make any objective division in forms with more plicae than S. (S.) subpunctatus. Except where indicated, museum specimens with the following plical counts are only known singly: $42,43(3), 44(3), 45,46,48,51,52,53(2), 54,56,60$, $63,64,71$. However, foreign authors who have undoubtedly had access to a greater volume of material provide good evidence for a bimodal distribution in the frequency of plical counts. Stafsche (1926) refers to specimens with about 45 plicae while Y'N (1931) refers to a number of specimens with
between 42 and 48 plicae, thus forms within the latter range are considered to belong to a third S. (Spondylopecten) species, (S. (S.) cardinatus). Во上нm (1883) records 55 specimens with over 60 plicae while Stafschr (1926) records numerous specimens with between 55 and 65 plicae, thus forms within the latter range, together with rare museum specimens with plical counts just outside this range $(51,52,53,54,71)$ are considered to belong to a fourth S. (Spondylopecten) species (S. (S.) globosus).

Spondylopecten (Spondylopecten) palinurus (D'Orbigny 1850) Pl. 3, Figs. 8-14; text figs. 75 (pars), 76-81

Synonymy

1850 Pectent palmurus sp. nov; D'Orbigny, v. 1, p. 342 (BoULE, 1925, r. 14, p. 161, pl. 20, figs. 11, 12).
v* 1850 Pecten Nereus sp. nov; D'Orbigny, v. 2, p. 22 (BOUIE, 1929, v. 18, p. 174, pl. 20, figs. 5, 6).
1850 Pecten Nicaerus sp. nov: d'Orbigny, v. 2, p. 22 (BOUIE, 1929, r. 18, p. 174, pl. 20, figs. 7. 8).
1852 Pecten crmaceus sp. nov; Buvignier, p. 23, pl. 19, figs. 7-12.
v 1857 Pecten symmetricus sp. nov; Morris in Hull, p. 103, pl. 1, figs. 3, 3a-c.

1858 Pecten subpunctatus MUNGTER: QuFnstedt, p. 627, pl. 77, figs. 27-29 (non MONSTER sp.)

1859 Pecter Monsheliadernsis sp. nov; CONTEJEAN, p. 316, pl. 23, figs. 16-18.

1860 Pecten Nigaeus d'Orbigny; Coquand, p. 79.
1862 Pecten erimaceus Buvignifr: Thurmann and Etallon, p. 250, pl. 35, fig. 2.
1862 Pecten arartcus sp. nov; Etallon in Thurmann and ÉTAILON, p. 251, pl. 35, fig. 3
1862 Pecten Monsbeluardensis Contejfan; Thurmann and Etailon, p. 252, pl. 35, fig. 5.
? 1874 Pecten catulloi sp. nov; Gfmielitaro and Di Blasi, p. 107, pl. 2, figs. 1-5.
? 1875 Pecten Gatullor Gfmmpliaro and Di Biasi; Gemmeliaro, p. 42.
1880 Pecten semuarticulatus sp. nov; G. NeNEGHINI. p. 357 , pl. 22, fig. 18.

1881 Pecten cartiert sp. nov; de Loricl, p. 88, pl. 12, ligs. 8-10.
1881 Pecten crmaceus Buvir, nifr: de Loriol, p. 92. pl. 13, figs. 1, 2.
1882 Pecten(Spondylopecten) cf. ermaceus BUVIGNIER; Roever, p. 52, pl. 2, figs. 4a-c.
1893 Pecten Cartient in 1. Orioli ; Siemiradzki, p. 119.
189. Pecten crinaceus Buvignifr; Dh Loriol, p. 48, pl. 5, fig. 4.
? 1897 Pecten Soybuerensis sp. nov; DE LORIOL, p. 128, pl. 15, fig. 6.
(?) 1899 Pccten Soybuercnsis DE L.ORIM: DE LORIOL, p. 170.
? 1900 Pecten Soybierensts de Loriol; de Loriol, p. 128.

1901 Pecten (Chlamys) Roeder sp. nov; DF Loriol, p. 103, pl. 6, figs 6, 7.
? 1903 Pecten subpunctatus MUNSTER; Remes, p. 203. pl. 19, figs. 8a-c (non Munster sp.).
(?) 1904 Pecten Sopbuerenses DE LORIOL; DE LORIOL, p. 217.
1904 Pecten stubpunctatus Munster: de Loriol, p. 217, pl. 23, fig. 4 (non Munster sp.).

1905 Pecten sp; Krumbeck, p. 104, pl. 14, figs. 2a-d.
v 1905 Pecten ermaceus Buvignier; Peron, p. 214, pl. 10, fig. 1.
1907a Chlamys Grossouzrez sp. nov; Cossmann, p. 239. pl. 8, fig. 19.
? 1910 Pecten subpunctatus Munster; Simionescu, p. 14 (non MUnster sp.).
1912 Chlamys (Aequipecten) palimutus (D'OrbigNY); Cossmann, p. 2, pl. 1, figs. 1-t.
1912 Pecten semiarticrlatus G. Meneghini; Dal Piaz, p. 246, pl. 1, figs. 15a, 15 b.
v 1916 Aequipecten symmetricus (MORRIS); Paris and Richardson, p. 523, pl. 44, figs. 6a, 6b.
1925 Chlamys (Aequipecten) syriacus sp. nov; Coss mann in DOUVIlle and COSSMANn, p. 325, pl. S, figs. $7 \mathrm{a}-\mathrm{c}$.
1926 Chlamys ermaceus (Buvignier); Roman, p. 196.
? 1931 Pecten (Spondylopecten) erinaceus BUVIGNIER; lin, p. 119.
v"? 1935a Cblamys (Aequipecten) macfadyeni sp. nov; COx, p. 176, pl. 23, figs. 11a, 11 b.

1936 Spondylopecten erinaceus (BuVIGNIER); DFCHAS EAUX, p. 67.
1952 Cblamys (Spondylopecten) stoliczkai sp. nov; Cox, p. 15. pl. 3, figs. 14-20.
v * 1952 Chlamys (Spondylopecten?) badiensis sp. nov; Cox, p. 16, pl. 1, figs. 14a, 14b.
"1958 Chlamys (Aequipecten) cf. palmunuts (D'OrBIGNY); R. Hudson, p. 419.
(?) 1958 Chlamys (Acquipecten) synaca Cossmann; R. HuDson, pp. 119, 420.
? 1959 Aequipecten kotsubu Kimura; Tamura, p. 58, pl. 6, figs 33, 34.
v 1964 Spondylopecten grossouvrei (Cossmann); J.-C. Fischer, p. 18, pl. 1, figs. 11, 12.
1965 Chlamys (Spondylopecten) badiensis COX; COX, p. 58, pl. 7, figs. 3, 4.

Lectotype of Pecten palmurus d'Orbigny 1850, v. 1, p. 342 designated herein; MNO 3401; figured Boule, 1925, pl. 20, figs. 11, 12; Callovian, Pizieux (Sarthe). Paralectotype; also MNO 340I; Callovian, Etrochey (Côte d'Or).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Fspece renflee, presque roncte à 20 côtes regulières, aplaties, plus larges que les sillons, avec des indices de dents sur les côtes. France, Pizieux’.

2. AMENDED DIAGNOSIS

Distinguished from all other species of S. (Spondylopecten) by the number of plicae (26 or less).

3. AMENDED DESCRIPTION

Dise sub-orbicular at all sizes (text fig. 76), maximum height 62 mm (Dt Loriol, 1894). Umbonal angle very variable (text fig. 78) but increasing (at a decreasing rate) during ontogeny to produce concave dorsal margins. Disc flanks moderately high.
Equilateral; equivalve, convexity variable, moderate to high, apparently increasing allometrically at a faster rate in earlier representatives (text fig. 77).
Intersinal distance greater in left valve than right; moderately large juvenile byssal notch becoming relatively smaller during ontogeny.

Text fig. 76: Spondylopecten (S.) palinurus - height/length.

Auricles well demarcated from disc, moderate in size, anterior larger than posterior. Anterior auricles meeting hinge line at about 90°, posterior auricles meeting hinge line at an obtuse angle. Right anterior auricle meeting disc at an obtuse angle; remaining auricles meeting disc at an acute angle. Right anterior auricle bearing between 5 and 8 radial costae. All auricles sloping downwards from umbo towards opposite valve (Pl. 3, Fig. 8).

Text fig. 77: Spondylopecten (S.) palinurus - convexity/length.

Both valves bearing between 18 (? 16, see Section 4) and 26 rounded radial plicae; modal number apparently increasing phyletically (text fig. 79); plicae slightly wider than sulci in right valve, converse in left valve. Plicae bearing 4 rows of short, closely spaced spines, directed ventrally (Pl. 3, Fig. 14).

Cardinal area of right valve bearing 2 peg-shaped crura, anterior larger than posterior (Roeder, 1882, pl. 2, fig. 4). Shell thickness moderate to high; plical amplitude reduced on shell interior.

Text fig. 78: Spondylopecten (S.) palinurus - length/umbonal angle.

Text fig. 79: Spondylopecten (S.) palinurus - frequency distributions for number of plicae in Bajocian, Oxfordian and Kimmeridgian specimens.

4. DISCUSSION

D'Orbigny's (1850) diagnosis for 'Pecten' palinurus (see Section 1) leaves no possibility of confusion for another Jurassic pectinid. Therefore, following Opinion 126 of the ICZN the name may be adopted for the species under discussion. Boule (1925) has figured one of the syntypes (MNO 3401) and this specimen is herein designated as lectotype. The other (also MNO 340I) becomes ipso facto the paralectotype. 'P.' Nireus d'Orbigny was separated from ' P.' palinurus on the basis of 'côtes plus simples', presumably implying a lack of spinose ornament. One of the syntypes (MNO 4294) possesses only two rows of spines per plica but
this is clearly the result of abrasion (as appears to be the case in all the following instances where a reduced number of spine rows is cited) and H / L (1) and the number of plicae (23) are within the range of S. (S.) palinurus from the same stage (Ox fordian). 'P.' Nicaeres n'Orbic,Ny was separated on the basis of abnormally wide sulci. However, this feature is merely the result of preservation of the 6 syntypes (MNO 4295) as internal moulds (Booule, 1929) which has led to a reduction in plical amplitude and an apparent increase in plical wavelength.

The single known type of 'P.' smmmetricus Morris (IGS 8853; Pl. 3. Fig. 9) from the Bajocian has 20 plicae (2 spine rows) and is a typical example of S. (S.) palinurus from the stage.
'P.' evmaceus Buxignier (3 spine rows, 22-24 plicae) and 'P.' ('Chlamys') Roederi in Lorks ($2+$ plicae), both described from the Oxfordian, have plical counts and metric proportions of their respective figures $(2,3)$ which are inseparable from those of S. (S.) palinurits from the same stage. 'P.' araricus Étallon was said to lack the spinose ornament of ' P.' erinacers but the figured specimen has clearly been subject to abrasion.

The holotypes (OD) of 'Ch.' ('Aequipecten') macfadyeni Cox (BM L6t138; Pl. 3, Fig. 11) from the Oxfordian/Kimmeridgian of E. Africa and 'Ch.' (S.) stoliczkat Cox (fGS 17281) and 'Ch.' (S?) badiensis Cox (BM L75245; PI. 3, Fig. 12) from the Callovian of Cutch, all have their respective numbers of plicae ($19,20 / 21,21 / 22$) and metric proportions $(t, 5,6)$ within the total (stratigraphically undifferentiated) range of S. (S.) palinurus. The first and last appear to lack spines but may be abraded. Specimens from the Callovian of E. Africa referred to 'Ch.' (S.) badiensis by Cox (1965) exhibit the characteristic spines. The holotype of 'Cb.' ('Ae.") macfudyeni also has an abnormally small number of plicae for its particular stratigraphic horizon but this might well be an artefact of the relatively limited number of specimens for comparison, as is almost certainly the case for 'P.' sp. KRL MBECh, 'P.' Cartueri De Lorion and 'P.' Monsbeliardensis Contejfan, all of which are from the Kimmeridgian and refer to specimens with respectively 22 , and as many as 25 and 26 plicae. Krumbeck's specimens were compared with ' P.' erinateus Buvignier, a synonym of S. (S.) palenurus (see above), while metric proportions of the figures of LDF Loriol's (7) and Contiean's (8) specimens are indistinguishable from S. (S.) palinurus. The inclusion of ' P.' Soybieyensis de Loriol (Oxfordian) within S. (S.) polinutrus is more problematical since forms with as few as 16 plicae are cited and L/UA (9) of the original figure is somewhat low. However, 'P.' semiavtuculutur Meneghini (Bathonian), a species with 17 plicae and high L/UA (10), has the plical spine rows (albeit only 2 - see above) diagnostic of S. (Spondylopecten) and DAL PIAz (1912) has collected a topotype specimen, the figure of which has metric proportions (11) which are indistinguishable from S. (S.) palinuras. It therefore seens likely that the range of variation in the latter species extends considerably further than that indicated by museum specimens alone. ' P.' catullor Gemvel. LARO and DI BLASI (Tithonian), a species with 22 plicae known from only + specimens, may therefore by synonymous with S. (S.) palimurus in spite of the considerably atypical H/L, L/C and L/UA (12) of its original figure.
'Ch.' ('Ae.') syracus Cossmann was said to have 30 plicae but the figures of the holotype (OD) reveal a maximum of
only 21 and metric proportions (13) are within the total range of S. (S.) palinurus. With the possibility of misapplication of Cussmann's specific name to forms which are referable to S. (S.) subpunctatus, unfigured records of his species in R. Hud$\operatorname{SON}(1958)$ nulust be treated with some caution.

The figures of ' P.' subpunctatus Munster in Quenstedt (1858) and Remes (1903) and the descriptions in de Lortol (1904) and Simbenescu (1910) are of specimens with respectively $25,18-19,24$ and $22-26$ plicae. All are thus outside the range of variation acceredited to Munster's species (see p. 98) and fall within the total range of S. (S.) palnurus. The specimens referred to in Quenstedt and de Loriol are also within the range of variation in museum specimens of S. (S.) pulinurus from the same stage (Oxfordian). There are insufficient museum specimens of comparable age (U . Tithonian) to allow an assessment of whether the same could be said of RE. wes' specimens. Those referred to in Simionescu are of indeterminate age.
'P.' (S.) ermacerts Buvignifr; Yin (Tithonian) was not figured and was only distinguished from ' P.' (S.) globosts Quenstedt; Yín ($=$ S. (S.) subpenctatus) by its possession of less than 30 plicae. Since this does not exclude all variants of S. (S.) subpunctatus Y'in's record is of uncertain status.

Although the exact dimensions of 'Ch.' Grossouvrei Cossmanv (Callovian) are not available the strongly convex form with 25 plicae is unlike that of any known Jurassic pectinid other than S. (S.) palimurus. For this reason 'Ae.' kotshbu Kimura; Tamura, an inflated form with 22 plicae from the U. Jurassic of Japan may also be synonymous with S. (S.) palinurus. It has not been possible to trace K'mura's original description.

5. STRATIGRAPHIC RANGE

A poorly preserved specimen with 23 plicae (BM 30+96) from the Spinatum zone (U. Pliensbachian) of Northants. might be an early representative of S. (S.) palinurus. However, apart from this there are no records of the species until the Garantiana and Parkinsoni zones (U. Bajocian) when, in the Cotswolds, the species is fairly common. Elsewhere S. (S.) pallnutrus is extremely rare in the U. Bajocian. Bathonian records are limited to N. italy (G. Meneghini, 1880; Dal Piat, 1912), and Indre (Cossmann, 1907a; J.-C. Fischer, 1964) and Var (BM L 10289) in France although numerous specimens are recorded in all but the last area. In the Callovian the species is only known from occasional specimens from the Cote d'Or and Sarthe in France (d'Orbigny, 1850; Cossmavn, 1912) and Cutch in tndia (Cox, 1952), and from E. Africa (Cox, 1965), Sinai (Duuvillf and Cossmann, 1925), S. Israel (R. Hurbov, 1958) and Arabia (BM L6151t). In Europe S. (S.) palinurus reaches its acme in the Oxfordian and Kimmeridgian when it is locally abundant. Certain records from the Tithonian are restricted to one specimen from the lower substage at Nattheim (BM 63059). However, specimens described from the L. Tithonian of Sicily (Gfumellaro and Dı Blasi, 1874; Gemmfllaro, 1875) and the U. Tithonian of S. France (Y'ın, 1931) and Czechoslovakia (Rfmes, 1903) may well constitute further records of S. (S.) palinurus (see Section 4).

Text fig. 80: Spondylopecten (S.) pulinurus - European distribution.

6. GEOGRAPHIC RANGE

In Europe (text fig. 80) the distribution of S. (S.) palinurus is intimately linked with that of coralliferous deposits (see Section 7). Thus the species occurs most commonly in the Oxfordian and Kimmeridgian of central W. Europe where this facies is particularly well developed. The lack of S. (S.) palinurus from coralliferous deposits in the Bathonian and Oxfordian of England and the Bathonian of Normandy sug-
gests that the northward range of the species was restricted by temperature (however, see Section 8).

In the Callovian the range of S. (S.) palinurus underwent an expansion along the southern shores of Tethys, resulting in a palaeolatitudinal spread of some 50° (text fig. 81). A similar expansion along the northern shores is evidenced only by one dubious specimen from the U. Jurassic of Japan (see Section 4).

Text fig. 81: Spondylopecten (S.) palinurus - World distribution (Callovian reconstruction).

7. DESCRIPTION OF ECOLOGY

Bivalved specimens of S. (S.) palinurus are quite common in the Upper Coral Bed and its lateral equivalents in the Parkinsoni zone (U. Bajocian) of the southern Cotswolds. The maximum height attained is 26.5 mm (BM L84516). The associated fauna is dominated by the 'coarse' phenotype of $C h$. (Ch.) textoria, Limatula, Plagiostoma, Ctenostreon and Trigonia together with the brachiopods Rhynchonella,

Terebratula and Zeilleria, and the coral Isastraa (Richardsov, 1907, 1910). S. (S.) palinurus also occurs in apparently non-coralliferous deposits of the Garantiana zone in the same area. However, the number of examples is small and only one specimen is known from non-coralliferous U. Bajocian deposits elsewhere in England. The modal number of plicae in specimens from the substage is 20 , with a range from 18-21 (text fig. 79).

In the Bathonian S. (S.) palmaras occurs fairly commonly in N . Italy, where it reaches a maximum height of 25 mm (G . MyNoraint, $1880 ; 1$ A1 PIM, 1912) and in a coral bed in Indre (Irance) where it is associated with the "coarse' phenotype of Cly. (Cb.) textoria (Cemsianv, 1907a; J.-C. Fiscitir, 196t). The range of plical variation in Bathonian S. (S.) palinurus is from 17 (G. Mi virotini, 1880) to 25 (Cussbanv, 1907a).

Although widespread in the Callovian (see Sections 5,6) 5 . S.) patinuras is not known to be common anywhere. The range of plical variation in upecimens trem the stage is from 20 (c.g. Cosshav height is $37 \mathrm{~mm}(N \mathrm{NS})$.

In the ()xtondian S. S. S palimuras is very common in the coral/Diceras reels of the Yomen, Newse and Swiss and French Jura. In the last area it reaches a maximum height of G2 1 mo (1) LoRku, 1894). The typical assuctated fauna is described on $p .88$. The range of plical variation undoubtedly extends from 20-26 (mode 22) and may include forms with as few as 16 plicate (text-fig. 79; 13 1.0 rucu, 1900).

In coral/Deceras facies in the kimmeridgian of the Juras. (S.) palinurbes is common and appears to reach a maximum height of 35 mm (Conatil $A \mathrm{~N}, 1859$). There is an abundant ansociated molluscan fauna of in - and epifaunal eastropods and bivalves (induding the bysate genera Camponectes, Oxyoma, Pinnat, Area and '1/ytilus') together with rhynchonellid brachiopods. Only one specimen (GPIG) is known from contemporaneous coral patch reef facies at La Rochelle and none are recorded from smilar facies at kelhem (S. Germany). The range of plical variation in kimmeridgian S. (S.) patinuras is from 22-26 (text fig. 79; CoNT1 If AN, 1859; Krumbres,$~ 1905$) with a mode of 24.

The single undoubted Tithonian example of S. (S.) palmaras wegether with other putative records from the stage (see Section 5) are all from coral reef facies (fauna p. 88).

There are no records of S. (S.) palinurus from the deep water pelagic limestones of the peri-Meditermanean region and the species is very rate in stheichastic deposits anywhere in Europe.

8. INTFRPRETATION OF FCOLOGY

The data presented in Section 7 bugest very strongly that the oceurrence of S. (S.) palmarus is dependent on the presence of corals. Reefs appear to have constituted the most favourable habitat but the fact that the epecies oceurs in coral accumulations of les than reefal dimensions (Parkinsoni zone, S. Cotswolds; Bathomian, Indre) sugesests that the particular abundance in reets is merely areflection of the concentration of corals rather than a consequence of a preference for
 pp. 83, 88). The correspondence between the areal distribution of coralliterous deposits and that of conmon S. (S.) palimurus in the Parkinsoni zone of N. Somerset and Ghoucestershire is striking enough to be an incentive for a tacies analysis of the underlying Garantima zone deposits in order to tent the possibility that the examples of S. (S.) palinurus contained therein might be derived trom laterally equivalent hat unexposed coralliferous deponits. Similarly the faet that the only occurrence in the Bathomian and Callowian where lacies are known (Bathonian, fadre) is from a coral bed
contaming the rect-dwelling 'coarse' phenotype of Cb . (Ch.) textorid should be an impetus for analyses of the sediments and fand of the other horizons containing S. (S.) peltmerus in thene stages.

In upite of the apparent dependence on corals by no means all coralliferous horizons within the utratigraphic range of S. (S.) palmurus were colonised abundantly. The fact that during the kimmeridgian coral patch reefs at the southerly Latitules of La Rochelle and Kelhem were only colonised very rarely or not at all, while during the Bajocian coralliferous deposits in Fingland were occupied in numbers, suggests that the complete absence of S. (S.) palmurus from Bathonian coral pateh reefs in Normandy and lingland and similar facies in the ()xfordian of England cannot be the result of a simple temperature dependence (see p. 95) or even of a more general intelerance of relatively unstable environments (see p. 89). In bertain of the above cases the lack of S. (S.) palmumes could be a consequence of the particular coral fauna of the reels and their resultant dense structure, an explanation advanced for the absence or rarity of S. (Pl.) subspinosus (sec p. 88). However, the Oxfordian reets of England do not seem to have had an especially dense structure (see p. 89). Evidence from the L.. Tithonian recf at Natheim, where S. (S.) palmumas is extemelve rare but S $P /=$) subspmosus is ahundant, suggests a more specific control on distribution. For an alternative explanation one might invoke the possibility (see p. 89) of a commensal relatiomehip between particular coral species and cacholiS. (Pl.) subopmosus and S. (S.) palinurus, and infer the absence of the relevant corals from the reeds lacking these Spondylopecten ypecies. However, such an explanation suffers generally from the lack of any direct evidence for commonsalism and specilically, in the case of S. (S.) palmurus, from the fact that in the Natheim reef the latter spectes is very bare atthough coral diversity is high, $6+$ species being cited by Gayta (1954). It must therefore be admitted that no unificel thenre can yet be propused to account for the inconsistent distribution of S. (Pl.) subspinosus and S. (S.) palinums in coralliferous facies (see p. 101).

The overall rarity of S. (S.) palinarms in the V1. Jurassic of fiurope as a whole can be viewed as a consequence of the localied development of coralliferous deposits. The very widespread development of argillaceous lacies in the CalWosian, producing unfarourable conditions for coral growth, maty well have prompted the migration of S. (S.) palmurus outside Europe along the southern shores of Tethys (see Sec(ion 6).

The usual occurrence of S. (S.) palinmms in moderate numbers with a high diversity fauna indicates that it was an equilibrium species (Lfonton, 1970). Presumably stenotopy was developed to a high enough degree to prevent competition with the other species of Spondylopecten with which it frecuently accurs.

9. FUNCTIONAI MORIHOLOGY'

In the absence of more precise ecological data for S. (S.) palmurus little can be added to the general interpretation of functional morphology in Spondylopecten presented for the essentially similar species S. (Pl.) subspinosus (see p. 89). A 'wedged' mode of life is further evidenced by the great varia-
tion in convexity in S. (S.) palinurus. However, as for S. (Pl.) subspinosus it cannot yet be said definitely that this is a positively adaptive feature brought about by developmental flexibility (however, see below).

The moderately large maximum height of S. (S.) palinurus (H:62) is near the upper limit for byssally attached Recent pectinids. The largest byssate but otherwise unsupported species from the coral reef fauna of Eniwetok Atoll (Gloripallium pallum) reaches a maximum height of 85 mm . However, this and other pendent or tightly byssate species rarely exceed a height of 75 mm (W'Aller, 1972b). It therelore seems likely that large specimens of S. (S.) palmutrus gained support, additional to that provided by the byssus, through contact with the substrate, as inferred independently above.
The moderate to high convexity and shell thickness in S. (S.) patinntrus suggest that at best it could only have been a very inefficient swimmer.

The apparent phyletic increase in the number of plicae may be interpreted mechanically when considered in conjunction with phyletic decrease in convexity and increase in height (see Section 10). The latter requires relatively large amounts of CaCO_{3} to be secreted when growth is based on a tight logarithmic spiral as in S. (S.) palintrus. A decrease in the spiral angle and hence in convexity thus represents a more bioeconomical basis for height increase. However, it must also entail a weakening of the shell so an increase in the number of plicae can be viewed as an attempt to strengthen and stilfen the shell by effectively shortening the wavelength of the corrugations. Such an interpretation requires however that the increased strength and stiffness contribute significantly to the fitness of the animal as a whole. This must be considered doubtful in S. (S.) palinumus since the thickness of the shell would appear to provide adequate protection against all but the most extreme stresses. Nevertheless, the impression gained by the author that the variation in convexity and number of plicae is positively correlated at any one horizon indicates that there is at least some functional interdependence and suggests moreover that S. (S.) palmurus is developmentally flexible (see above).

10. ORIGINS AND EVOLUTION

If the very doubtful record of S. (S.) palinurus in the U. Pliensbachian is discounted, S. (S.) subpunctatus becomes the most likely ancestor for the species (although see p. 101). There is no evidence to suggest that the evolution of a separate pattern of plical variation occurred gradually.

There appear to be several phyletic trends within S. (S.) palinurus. Maximum height increases, presumably gradually, from 26.5 mm (U. Bajocian) to 37 mm (Callovian) to 62 mm (Oxfordian). The reversal of this trend in the Kimmeridgian $\left(H_{\text {max }}: 35\right)$ could well be an artefact of the relatively limited number of specimens from the stage measured by the author. The pronounced phyletic increase in the mean number of plicae indicated by text fig. 79 might also be an artefact of the more general paucity of measured museum specimens since bibliographic sources (see Section 4) suggest a far less consistent trend. Nevertheless, specimens mentioned in the literature do not refute the gradual unidirectional trend in the nodal number of plicae indicated by text fig. 79. Indeed the

15 or so specimens collected by Cox (1952) from the CalIovian of Cutch which were said to have a range of between 20 and 22 plicae (exactly between the Bajocian and Oxfordian modes) provide positive evidence for such a trend. Only one of the other Callovian records (Cox, 1965 for two specimens with 23 plicae) refers to specimens with plical counts outside the latter range.
A further phyletic trend is towards decreased convexity. However, unlike the above cases there is little reason to think that evolution occurred gradually. Most Callovian, Oxfordian and Kimmeridgian specimens have lower C / L ratios than their Bajocian ancestors (text lig. 77). Since relative convexity appears to increase during the ontogeny of the latter there is the possibility that descendant forms could have arisen by neoteny. However, heterochrony cannot account for the periodic phyletic increases in the ranges of plical variation constituted by specimens mentioned in the literature together with those in museums (Bajocian, 18-21; Bathonian, 17-25; Callovian, 20-23: Oxfordian, 20-26; Kimmeridyian, 22-26) thus phyletic evolution in S. (S.) palmurtus may generally have been a product of change in the structural rather than the regulatory genome.

Phyletic increase in maximum height combined with stenotopy and a possibility of neoteny suggests the prevalence of ' K ' selection for increased trophic efficiency (Gourd, 1977).

```
Spondylopecten (Spondylopecten) subpunctatus
(Munster 1833)
Pl. 3, Figs. 15-19; text figs. 75 (pars), 82-86
```


Synonymy

```
v* 1833 Pecten subpuzctatus sp. nov; Munster in Gold. Fuss, p. 48 , pl. 90 , figs. 13a, 13b.
1843 Pecten subpunctatus MUNSTFR; QUENSTEDT, p. 433.
p 1843 Pectenglobosus sp. nov; Quenstedt, p. 476.
1850 Pecten subpunctatus MUNStFr;D'Orbigny, v. 1, p. 374.
1852 Pecten Moreanus sp. nov: Buvignier, p. 24, pl. 19, figs. 18-20.
1852 Pectenglobosus Quf.nstedt; Quenstedt, p. 507. pl. 40, fig. 45, (non fig. 46; non Quenstedt sp.).
non 1858 Pecten subpunctatus MONSTER: QUENSTEDT, p. 627, pl. 77, figs. 27-29.
v*1858 Pecten aequatus sp. nov; QUENSTEDT, p. 755, pl. 92, fig. 12.
1858 Pecten globoshs Quenstedt; Quenstedt, pl. 78, fig. 2 (non pl. 92, fig. 20; non Quenstedt sp.).
1862 Pecten Globosus Quenstedt; Thurmann and Étallon, p. 250.
1866 Pecten subpunctatus MUNSTER; Oppel., p. 289.
1867 Pecten globosus Quenstedt; IDE LORIOL, p. 335, pl. 13, fig. 3 (non Quensteidt sp.).
1867 Pecten Rochati sp. nov; DE LORIOL, p. 336, pl. 13, figs. 1, 2.
1874 Pecten arotoplicus sp. nov; Gemmellaro and Dı Bi asl, p. 104, pl. 2, figs. 6-10.
1875 Pecten arotoplicus Gemmellaro and Di Blasi; Gemmelearo, p. 41.
1881a Pecten aequatus QuFNSTEDT; BOEHM, p. 183.
\(1881 b\) Pecten aequatus Quenstedt; Bofhm, p. 72.
v 1883 Pecten arotoplicus Grmmellaro and DI Blasi; Bоенм, p. 609, pl. 67. figs. 34, 35.
```

```
    ?1886a Pecten erpus sp. nov; DE Gregorio, p. 670, pl.1,
        fig. }8
    ?1893 Pecten globosa QuenstFdt; Siemiradzkl, p. 119.
    1894 Pecten Moreanus Buvignier; De LORIOL, p. to,
        pl. 4, fig. 12.
    1898 Pecten globosus Qulnstedt; E. PhilipPl, p. 620,
        texr figs. 6, 7 (non QueNSTEDT sp.).
    ?1898 Pecten (Chlamys) erpus De GregoriO; Greco,
        p. 110, pl. 8, figs. 32, 33.
    1903 Pecten arotoplicatus Gemmfllaro and Di Blasi;
        REmES, p. }202
    1903 Pecten Rochati DE LORIOL; Remes, p. 202, pl. 19.
        figs. 5a-c.
    1903 Pecten Gemmellaroi sp. nov; REMES, p. 202,
        pl. 19, figs. 7a-c.
non 1903 Pecten subpunctatus MUNSTER; RemeS, p. 203.
        pl. 19, figs. 8a-c.
    1903 Pecten (Spondylopecten) globosus QuensTEDT;
        REMES, p. 205 (non QuenSTEDT sp.).
non 1904 Pecten subpunctatus MUNSTER; De Loriol, p. 217,
        pl. 23, fig. 4.
    v 1905 Pecten moreanus Buvignier; Peron, p. 213.
    1905 Pecten palmyrensis sp. nov; KruMbECK, p. 102,
        pl. 3, figs. 8a, 8b.
    ?1905 Pecten (Chlamys) globosus Quenstedt; Kilian
        and GUEBHARD, p. 817.
non 1910 Pecten subpunctatus Munster; Simionescu,
        p. It.
    1910 Pecten moreanus Burvignifr: Simionescu, p. It.
        pl. 2, fig. 6.
    1913 Pecten globosus Quenstedt; JOUkOWSky and
        Favre, p. 400, pl. 17, figs. 3-6 (non Quenstedt
        sp.).
    1920 Pecten aratoplicus Gemmellaro and Di Blasi;
        Faure-Marguerit, p. }58
    1920 Pecten (Spondylopecten) globosus QueNSTEDT;
        Faure-Marguerit, p. 60, (non Quenstedt sp.).
v 1926 Spondylopecten subpunctatus (MONSTER);
        STAESChe, p. 109, pl.4, fig. }10
    1926 Spordylopecten aequatus (QuenSTEDT); STAESCHF,
        p. 112.
    1931 Pecten (Spondylopecten) globosus QueNSTEDT;
        Yin, p. 118, pl. 12, figs. 3-6 (non Quenstedt sp.).
?1931 Pecten (Spondylopecten) ermaceus Buvignier;
        Yin, p. I19(non Buvignier sp.).
```

? 1931 Pecten aff. subpunctatus MUNSTER; Y'iN, p. 122.
1936 Spondylopecten moreanus (Buvignier); DechasEAUX, p. 67.
? 1959 Spondylopecten globosus (Quenstedt); HOLDER and Ziegier, p. 165.
1966 Spondylopecten aequatus (Quenstedt); KarveCorvinus, p. 115.
(?) 1971 Chlamys cf. erpus (De Gregorio); Wendt, p. 156.
v 1975 Spondylopecten aequatus (Quenstedt); Yamanl, p. 64, pl. 3, fig. 10.
v* 1975 Spondylopecten proumbonatus sp. nov; YAMANI, p. 64, pl. 3, figs. 11, 12.

Lectotype of Pecten subpunctatus Munster in Goldfuss 1833, p. 48, pl. 90, fig. 13 designated herein; BSPHG AS VII 627; Pl. 3, Fig. 15 herein; Weisser Jura β (Oxfordian), Streitberg (Franconia). Paralectotypes; the 9 other syntypes (BSPHG); also Weisser Jura β, Streitberg.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa suborbiculari fornicata, costis crebris convexis marginalibus muricatus, sulcis angusti, oribus in fundo plano profunde transversim striatis, auriculis aequalibus.

Emontibus Baruthinis M. M.
Dieser kleine Pectinit findet sich bei Streitberg. Er ist hoch gewölbt, gleichklappig, fast kreisrund, und hat zahlreiche, convexe, gleichförmige Rippen, aul deren Rücken man bei der Vergrößerung stachelförmige Lamellen bemerkt. Die Zwischenfurchen sind concentrisch liniert, so daß sie ein punktiertes Ansehen haben, und die Ohren klein und gleichförmig.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of S. (Spondylopecten) by the number of plicae (27-36 or 37, see Section 4).

Text fig. 82: Spondylopecten (S.) subpunctatus - European distribution.

3. AMENDED DESCRIPTION

Essentially similar to S. (S.) palinurus. Differing by the diagnostic larger number of plicae (see Section 2) whose range and mode apparently oscillates phyletically (text lig. S6), by the evident possession of only 2 plical spine rows, and by the higher relative convexity (text fig. 84) of contemporaneous Oxfordian specimens and the lower relative convexity of Tithonian forms of S. (S.) subpunctatus in comparison with examples of S. (S.) palizurus from any horizon. Unlike S. (S.) palinurus, S. (S.) subpunctatus also exhibits phyletic reduction in L/UA (text fig. 85) although this could be more apparent than real (see Section 9).
H / L is plotted in text fig. 83. The maximum height is 58 mm (Gfmmfilaro and Di Blasi, 1874).

Text fig. 83: Spondylopecten (S.) subpunctatus - height/length.

Text fig. 84: Spondylopecten (S.) subpunctatus - convexity/tength.

4. DISCUSStON

The syntype series of 'P.'subpunctatus Monstr (BSPHG) consists of a number of specimens from sponge-limestone facies, all less than 10 mm in height and with approximately 30 plicae. Staforhe (1926) considered such specimens to be
specifically separable from juveniles of a similarly plicate form, Spondylopecten aequatus (Quenstedt), from coral reef facies, on the basis of the flat tops to the plicae. However, this feature together with a relatively large umbonal angle (1) can be plausibly interpreted as an aspect of ecophenotypic variation (see Section 8) and is therefore no basis for a specific distinction. Thus, on grounds of historical precedence Mevstar's specific name is applied to the species described in Section 3 and a lectotype (BSPHG AS VIf 627; Pl. 3, Fig. 15) is herein designated. Those specimens incorrectly referred to Munstar's species in Qunathit (1858), Rymł (1903), in Loriol (1904) and Simionescu (1910) are discussed on p. 94. The two specimens said by Yin (1931) to have affinities with Muviter's species are of uncertain status since they were not illustrated and were described only as having numerous ribs. Specimens referred by Yin to 'P.' (Spondylopecten) erinaceus Blvignir r were described with similar imprecision and may be referable to either S. (S.) subpunctutus or S. (S.) palinurus (q. v.).

Quenstedt's specific name 'P.' globosus has been variously employed in the literature (discussion p. 104) on account of the vagueness of the original description ($18+3$) and the fact that the name was subsequently applied by Quenstedt (1852, 1858) to illustrations of both a specimen with about 60 plicae and a specimen with about 30 plicae. The latter is indistinguishable from S. (S.) subpunctatus, as are specimens from the Oxfordian with 32 plicae referred to Quenstedt's species by Thurmann and Étallon (1862) and specimens from the Tithonian with $32,30,30,32,30-35$ and 34 plicae referred to Quenstedt's species by, respectively, DF Loriol (1867), Philippi (1898), Rfmes (1903), Joukowsky and Favre (1913), Faure-Marguerit (1920) and Yin (1931). Specimens referred to Quenstedt's species by Siemiradzki (1893), Kilian and Guebhard (1905) and Holder and Ziegler (1959) are of uncertain status because the number of plicae was not stated.
The sole observed type (GPtT 4-92-12; Pl. 3, Fig. 17) of ' P.' aequatus Quenstedt (Kimmeridgian) and the holotype

Text fig. 85: Spondylopecten (S.) subpunctatus - length/umbonal angle.
(OD; BSPHG 1957 It 329; Pl. 3, Fig. 18) of S. proumbonatus Yamani (Tithonian) have respective numbers of plicae (28,31) and metric proportions $(2,3)$ that are indistinguishable from those of S. (S.) subpunctatus from comparable horizons. Similarly the plical counts and metric proportions ($32-34 ; 4$) supplied by Buviginier (1852) for 'P.' Moreantis (Oxfordian) and derived from the figures of ' P.' Gemmellaroi Remes (Tithonian; 35;5) and 'P.' Palmyrensis Krum. bech (Kimmeridgian; $28 ; 6$) are inseparable from those of S. (S.) subpunctatus from the appropriate horizon.
'P.' arotoplicus Gevuellaro and Dı Blast (Tithonian) has a plical count (32) within the range of S. (S.) subpunctatus from the same stage and the large umbonal angle (95°) cited by the authors appears to be nothing more than a consequence of large size since L/UA (7) is within the range of projected Tithonian ontogenies. ' P.' Rochati di Lorlol, also from the Tithonian, has metric proportions (8) of the single known specimen which are indistinguishable from those of S. (S.) subpunctatus from the same stage. It therefore seems extremely likely that the abnormally large number of plicae (37) represents extreme variation within S. (S.) subpunctatus.
' P.' erpus De Gregorio was erected for a specimen from the Aalenian of Sicily whose number of plicae (28) and high convexity suggest strongly that it is conspecific with S. (S.) subpunctatus. Greco (1898) has figured a further specimen with 32 plicae from the Aalenian of Calabria under the same specific name.

5. STRATIGRAPHIC RANGE

Assuming that ' P.' erpus is synonymous with S. (S.) subpunctatus (see Section 4) the earliest records of the latter

Text fig. 86: Spondylopecten (S.) subpunctatus - frequency distributions for number of plicae in Oxfordian, Kimmeridgian and Tithonian specimens.
species are from the Opalinum zone of Calabria (Greco, 1898) and the Murchisonae zone of Sicily (Df Grfgorio, 1886a). Windt (1971) considers that De Gregorio's species ranges into the U. Bajocian in the latter area. Otherwise S. (S.) subpunctatus is unknown before the Oxfordian, when it is locally abundant. It is found thus until the U. Tithonian (Boehm, 1883; Remes, 1903; Faure-Marguerit, 1920; Yin, 1931). The lack of Bathonian and Callovian records and the consequent doubt that this attaches to the systematic position of ' P.' erpus could well be due to the rarity of the favoured reefal facies in Furope (see Sections 7, 8).

6. GEOGRAPHIC RANGE

The distribution of S. (S.) subpunctatus within Europe (text fig. S2) is intimately linked with that of reefal deposits (see Sections 7, 8). Thus during its acme in the U. Jurassic the species occurs most abundantly in S. Europe where this facies is particularly well developed. The only record outside Europe is from Kimmeridgian coral-bearing limestones in the Lebanon (Krumbeck, 1905).

The absence of S. (S.) subpunctutus from reefal deposits in the Oxfordian of England may indicate that latitudinal temperature changes played some part in controlling the distribution of the species (however, see Section 8).

The absence of S. (S.) subpunctatus from L. Bajocian coral reefs in E. France need not affect the taxonomic status of roughly contemporaneous specimens referred to ' P.' erpus from S. Italy and Sicily (see Sections 4, 5). The latter areas probably lay near the south side of Tethys thus it could be that S. (S.) subpunctatus arose in that region and had insufficient time to spread to more northerly latitudes before the L. Bajocian. In any case there are some grounds for thinking (see p. 89) that reefs with a structure such as that of the L. Bajocian reefs in E. France may have constituted an unfavourable environment for Spondylopecten.

7. DESCRtPTION OF ECOLOGY

The putative early records of S. (S.) subpunctatus from the Aalenian and Bajocian of Sicily (see Section 5) are from condensed deposits probably formed on a guyot within the Tethyan ocean. Occasional intercalations of coral debris suggest that reefs were periodically developed nearby (WFNDT, 1963, 1971).

The species occurs abundantly in the Oxfordian coral reefs of the Yonne (Płron, 1905) and Swiss Jura (De Lorint, 1894) in association with the fauna described on p. 88. The maximum height of Oxfordian S. (S.) subpunctatus is 32 mm (MNS) and the range of plical variation (text fig. 86) is from 29-35 (mode: 32).

Sponge 'reef' facies in the Oxfordian and Kimmeridgian of S. Germany contain numerous S. (S.) subpunctatus but the adult height is rarely more than $5-7 \mathrm{~mm}$ (Staesche, 1926). The plicae are also flat-topped and the L/UA ratio (1) is typically low compared to specimens from coral reefs. Examples from the latter facies in the Kimmeridgian at Kelheim (S. Germany) reach a maximum height of 35 mm (GPłT) and are associated with a rich bivalve fauna (Воени, $1881 \mathrm{a}, \mathrm{b}$) while those from sponge 'reef' facies are typically associated
with a low diversity/density bivalve fauna in which Isoarca is the only form to occur in numbers (Nitzopoulos, 1974). S. (S.) palinurus seems to be absent from the Kelheim reef but it is common in coral/Diceras facies in the Kimmeridgian of the Jura where S. (S.) subpunctatus is unknown. The latter is also absent from contemporaneous coral reefs at La Rochelle but S. (S.) palinurus is in addition extremely rare.

The range of plical variation in Kimmeridgian S. (S.) subpunctatus is from 27-31 (text fig. 86) and forms from reefal facies seem to have a relatively high L/UA (text fig. 85) and C/L (text fig. 84) compared to their Oxfordian counterparts.

In the Tithonian S. (S.) subpunctatus occurs, often in abundance, in the coral reefs of Languedoc (Yin, 1931) and Isère (Faure-Marguerit, 1920) in S. France, Geneva in Switzerland (De Loriol, 1867) Arnegg, Neuberg, Nattheim, Sirchingen and Wittlingen in S. Germany (GPIT; Stafsche, 1926; Yavani, 1975), Stramberg in Czechoslovakia (Воени, 1883; Remes, 1903) and near Palermo in Sicily (Gevmellaro and di Blasi, 1874; Gevmellaro, 1875) where the species reaches a maximum height of 58 mm . The range of plical variation is from 30-37 with a mode of 35 (text fig. 86; de Loriol, 1867) and L/UA (text fig. 85) and C/L (text fig. 84) are large compared to Kimmeridgian and Oxfordian forms. The typical associated fauna is described on p. 88. S. (S.) palimutus is only known to be an associate at Nattheim and there very rarely. However, it may also be present in Sicily, Provence and Czechoslovakia (see p. 94).

Apart from the occurrences discussed above S. (S.) subpunctatus is a rare species and none of the other definite records (see Synonymy) are unrelated to the development of reefal facies.

8. INTERPRETATION OF ECOLOGY

S. (S.) subpunctatus is an exemplar of the standard view (Hertlein 1969: Hallam, 1976) that Spondylopecten is a reefrestricted genus. There is no evidence that anything other than reefs were colonised during the U. Jurassic acme of S. (S.) subpunctatus thus the absence of the species from such minor coral stands as were colonised by the less restricted S. (S.) palinurus in the M. Jurassic of Europe need not be construed as evidence against the view that ' P.' erpus is synonymous with S. (S.) stbpunctatus (see Section 4). The absence of S. (S.) subpunctatus from genuine coral reefs in the L. Bajocian of E. France can be explained plausibly in several ways (see Section 6) while the general absence of the species from other bioherms in the M. Jurassic of Europe (see Section 5) could be due to their small size and scattered distribution.

Although a temperature dependence might account for the absence of S. (S.) subpunctatus from some U. Jurassic reefs (see Section 6) the inconsistent distribution in reefs of the same palaeolatitude argues against the general applicability of such an explanation. The abundance of other Spondylopecten species in some of the reefs lacking S. (S.) subpunctatus rules out an appeal to the unsuitability of the general reef structure (see p. 88) while an explanation in terms of a specific commensal relationship (see p. 96) is excluded by the evidence that S. (S.) subpunctatus used both corals and sponges as host. The inverse correlation in numbers with S. (S.) palinurus at cer-
tain localities in the Kimmeridgian and Tithonian suggests a further possible explanation for the irregular distribution of S. (S.) subpunctatus in the form of competition. However, the co-occurrence of the two species in large numbers in the Oxfordian (and probably at some localities in the Tithonian) argues against this hypothesis. In any case, if Spondylopecten species occupied different microhabitats (see p. 89) it seems unlikely that they would have competed.

The small size, low L/UA and flattened plicae of S. (S.) subpunctatus in sponge 'reef' compared to coral reef facies can be attributed to stunting (see p. 99). Retardation of the rate of size (L) increase while shape (UA) development maintained the same rate would result in small absolute size and low L/UA, and the small size for any given age would cause increased abrasion by the substrate of a standard area of shell surface and could thus be expected to lead to relatively flattened plicae. The small size of the associated faunal elements is further suggestive of the occurrence of stunting although an analysis of growth lines is required to substantiate the hypothesis. Since Nitzopoulos (1974) estimates the depth of the sponge 'reefs' to have been between 50 and 100 m (compared with a maximum of a few tens of metres for coral reefs) an attractive explanation for stunting is available in terms of the reduced food supply characteristic of greater depths (FURsich and Hurst, 1974).

9. FUNCTIONAL MORPHOLOGY

As for S. (S.) palinurus little can be added to the general interpretation of functional morphology in Spondylopecten presented on p. 89. Variation in convexity provides support for the inference of a 'wedged' mode of life and the higher convexity of S. (S.) subpunctatus compared to S. (S.) palinutus in contemporary populations implies that the former species occupied crevices, fissures etc. of a larger size.

Phyletic decrease in relative convexity might be explained as a bioeconomical correlate of increased size, as has been suggested for S. (S.) palinurus (but see Section 10). However, unlike the latter species there is no compensatory directional change in the strength and stiffness provided by shell ornamentation, since the mode and range of plical variation seems to oscillate at random. It is the author's impression, nevertheless, that there is a positive correlation between convexity and number of plicae at any one horizon so at least some mechanical interdependence is implied, which may in turn be related to phyletic size change.

The apparent phyletic decrease in relative umbonal angle receives no obvious mechanical explanation and may simply be an artefact of the measuring technique superimposed on the 'proumbonate' form (Yamani, 1975) of later populations.

The maximum height of 58 mm is within the size range of 'unsupported' bysally attached Recent pectinids (see p. 97) thus S. (S.) subpunctatus was probably byssate throughout ontogeny. The inflated form suggests that if it did ever unattach itself S. (S.) subpunctatus could only have been a very poor swimmer.

10. ORIGINS AND EVOLUTION

If S. (S.) subpunctatus arose after the Bajocian it is most reasonable to conclude that S. (S.) palinurus was the ancestor
rather than vice versa as suggested on p. 97). However, if, as seems very probable (see Section 5, 7, 8), S. (S.) subpunctatus arose in the Aalenian no ancestor is available within the same subgenus. There is no particular reason for concluding that S. (Plesiopecten) subspinosus must be the ancestor (see p. 83) and indeed on gross morphological grounds it would seem likely that S. (S.) subpunctatus arose from a quite separate stock. The first apparent occurrence of the species (Aalenian; S. Italy, Sicily), outside what subsequently became the main geographic range, provides evidence for such a view and also supports the 'allopatric' model of speciation.
S. (S.) subpunctatus exhibits some evidence for gradual phyletic evolution. Maximum height increases from 32 mm (Oxfordian) to 35 mm (Kimmeridgian) to 58 mm (Tithonian) and within the limits of the available data there appears to be a similar increase through this interval in L/C and L/UA (although see Section 9) of specimens from coral reef facies. Since both L/C and L/UA seem to increase allometrically in ancestral (Oxfordian) populations lescendant forms may have arisen by the acceleration of shape development with respect to size. However, heterochrony cannot account for the periodic phyletic additions to the range of plical variation (Oxfordian 29-35, Kimmeridgian 27-31, Tithonian 30-36) so both structural and regulatory genome evolution is implied.
Size increase and stenotopy are suggestive of ' K ' selection in the evolution of S. (S.) subpunctutus. The possible occurrence of acceleration is however more suggestive of ' r ' selection (Gould, 1977).

Phyletic reduction in relative convexity at least after the Kimmeridgian night have been allowed by the vacation of the appropriate niche through the decline of the relatively low convexity species S. (S.) palinutrus. The mean C / L of Tithonian S. (S.) subpunctatus is however considerably lower than that of S. (S.) palinurus at any time and besides the decline in S. (S.) palinuruts may be more apparent than real (see p. 94). An alternative explanation for the reduction in convexity is suggested in Section 9.

Spondylopecten (Spondylopecten) cardinatus (Quenteded 1858)
Pl. 3. Figs. 20, 21 ; text fig. 87

Synonymy

1858 Pecten cardinatus sp. nov; Quenstedt, p. 627, pl. 78, fig. 1.
v. 1883 Pecten spinicostatus sp. nov; Whidborne, p. 502, pl. 15, figs. 14, 14 a.
1916 Aequipecten spinicostatus (Whilborne); Paris and Richarison, p. 522.
1926 Spondylopecten cardinatus (Quenstedt): Staesche, p. 110.
p 1931 Pecten cordiformis Gemmellaro and Di Blasi; Yin, p. 119 , pl. 12, fig. 7. pl. 13, fig. 7 (non Gemmfliaro and Di Blasi sp.).
No trace of the type material of Pecten cardinatus Quenstedt 1858, p. 627, pl. 78, fig. 1 has yet been found in the Quenstedt Collection (GPIT). The figured specimen was derived from the Weisser Jura γ (Kimmeridgian) of Heuburg, S. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

, Werden die Formen größer, dann treten zwar Unsicherheiten in der Bestimmung ein, doch will ich noch einen davon als Pecten cardinatus Tab. 78. Fig. I unterscheiden. Die Form nach schließt er sich an globosus Fig. 2 an, aber feine Rippen sind viel breiter. Ich würde itn dennoch globosits γ genannt haben, wenn nicht der Name 'eingezapft' passend auf die Schloßzähne anspielte, welche ich bereits in Handb. Petrel. Pay. 507 nachwies. Diese Zahnung des Schlosses ist bei verkieselten so eigentümlich, daß vielleicht später daraus eine besondere Gruppe Cardinaten gemacht werden kann. Kann ich auch bei diesen Verkalkten die Zähne nicht nachweisen, so ist wegen der Analogie an der Existenz nicht zu zweifeln. Die Rippen sind schmal, sehr erhaben, und zu beiden Seiten gehen in den Furchen eigentümliche Zähnchen herab, die sich nicht berühren. Nur in der Jugend scheinen diese Zähnchen wie bei subpunctatus die ganze Furche zu füllen.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of S. (Spondylopectern) by the number of plicae (42-48).

3. AMIENDED DESCRIPTION

Essentially similar to S. (S.) subpunctatus. Differing by the diagnostic larger number of plicae (see Section 2), whose range of variation, if anything, increases phyletically (see Section 10) and by the generally higher umbonal angle, whose range of variation is from 91° (BM 66825) to 107° (BM L84341).

There is insufficient data to chart phyletic changes in umbonal angle and convexity; C / H for Bajocian forms is plotted in text fig. 87.

The maximum height is 33.5 mm (BM L41934).

4. DISCUSSION

The original description of ' P.' cardinatus Quevstedt (see Section 1) does not specify the number of plicae but the figure shows about 36 , which suggests that it might be an extreme representative of S. (S.) subpunctatus. There seem to be no traces of the original to the figure (or of any other type specimens) in the Quf vstedt Collection (GPIT) and it may be lost. However, Stafschr (1926) probably had access to the specimen and applied the name to forms with about 45 plicae, as in the species described in Section 3. If it could be established beyond reasonable doubt that Quenstedt's type material is lost the most sensible course would be to designate a neotype in conformity with Staesche's hypodigm. Until this is done the species described in Section 3 can only provisionally be accorded the name S. (S.) cardinatus.

The sole observed syntype of ' P.' spinicostatus Whidborne (BM 66825; Pl. 3, Fig. 21) possesses about 45 plicae and in its convexity (1) and number of spine rows (2) is indistinguishable from S. (S.) cardinatus.

Ot the specimens which Yin (1931) placed in 'P.' cordiformis Gfumellaro and Di Blasi, only one, with 60 plicae, is referable to that species ($=$ S. (S.) globoszis). The remainder, with 42-48 plicae, are inseparable from S. (S.) cardinatus.

Text fig. 87: Spondylopecten (S.) cardinatus - convexity/height.

5. STRATIGRAPHIC RANGE

Although a long-lived species S. (S.) cardunatus is only known from a few disjunct records. The earliest is from the Parkinsoni zone (U. Bajocian) of the Cotswolds where at least seven specimens (see Section 7) have been found. Staesche (1926) states that the species occurs sporadically in the Oxfordian and Kimmeridgian of S. Germany but it would seem that only two specimens have actually been recovered, one from the U. Oxfordian (GPIT) and one from the Kimmeridgian (Stafsche's measured specimen). A further two specimens (GPIT, BM 49199) are known from the L. Tithonian of the same area. 15 specimens are recorded from the U. Tithonian of S. France (Yin, 1931).

6. GEOGRAPHIC RANGE

S. (S.) cardinatus is unknown outside Europe. Within Europe, records are widespread but patchy (see Section 5). They seem to indicate a gradual southward migration.

7. DESCRIPTION OF ECOLOGY

S. (S.) cardinatus is found in the U. Coral Bed (U. Bajocian) at Dundry nr. Bristol and its probable lateral equivalent at Cleeve Cloud nr. Cheltenham (assoc. fauna p. 95). Seven specimens are contained in the BM, three with 43 plicae, three with 44 and one with 46 . The maximum height is 33.5 mm (BM L41934).
Specimens from the Oxfordian and Kimmeridgian of S. Germany (see Section 5) are, according to Staesche (1926), derived from sponge 'reef' facies (fauna p. 101). Staesche cites a height of 31 mm for a Kimmeridgian specimen. Specimens from the L. Tithonian of Nattheim (Swabian Alb) and from the U. Tithonian of Languedoc (see Section 5) are derived from coral reef facies (fauna p. 88) and have a range of plical variation from 42-48. The largest known specimen has a height of about 25 mm (BM 49199).

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that coralliferous deposits constituted the most favourable environment for S. (S.) cardinatus. Both short-lived coral stands and reefs seem to have been suitable (cf. Hertlein, 1969; Hallan, 1976) although by
no means all such coral accumulations were colonised. In particular, the absence of S. (S.) cardinatus from the coralliferous deposits in the Oxfordian of England and E. France, the Oxfordian and Kimmeridgian of the Jura, and the Tithonian of the Franconian Alb, Czechoslovakia and Sicily, is very noticeable. An explanation in terms of the general structure of the coral accumulations (see p. 88) is precluded by the presence of other Spondylopecten species and the invocation of interspecific competition (see p. 101) does nothing to solve the problem since at one time or another S. (S.) cardinatus occurs with abundant examples of each of the other S. (Spondylopecten) species (e. g. with S. (S.) palinurus in the U. Bajocian of England, with S. (S.) subpunctatus in the U. Tithonian of France and with S. (S) globosus in the L. Tithonian of S. Germany). A highly specific commensal relationship (see p. 96) seems to be ruled out by the fact that S. (S.) cardinatus was apparently able to colonise sponge as well as coral accumulations and a temperature control can be discounted because the distribution of the species is still inconsistent in coralliferous deposits at the same palacolatitude (e.g. in the S. German Tithonian).

9. FUNCTIONAL MORPHOLOGY

As for other species of S. (Spondylopecten) little can be added to the general interpretation of functional morphology presented for the genus as a whole (p. 89). The considerable variation in convexity of S. (S.) cardinatus is further suggestive of a 'wedged' mode of life. The comparable mean convexity to that of both S. (S.) palinurus and S. (S.) subpunctatus suggests that cavities of the order of size accupied by these species were also colonised by S. (S.) cardinatus.

The small maximum height (33.5 mm) indicates that S. (S.) cardinatus could have remained byssate throughout ontogeny (see p. 101) and it is likely that, even if it did unattach itself, swimming would have been severely restricted by the inflated form.

10. ORIGINS AND EVOLUTION

Assuming that S. (S.) subpunctatus arose in the Aalenian (see p. 100) the latter is the most likely ancestor for S. (S.) cardinatus. Otherwise the only possible ancestor within the subgenus is S. (S.) palinurus. In neither case could trans-specific evolution have been based on beterochrony so some major change in the genome is implied. There is no evidence that this occurred gradually.

There is too little data to allow a confident assertion of the existence of phyletic evolution within S. (S.) cardinatus. However a slight phyletic increase in the range of plical variation (from 43-46, U. Bajocian to 42-48, U. Tithonian) and a decrease in maximum height (from 33.5 mm , U. Bajocian to 31 mm , Kimmeridgian to about 25 mm , U. Tithonian) is indicated by the few available specimens. Both trends would seem to indicate 'r' selection (Gould, 1977) in contrast to the apparent field occurence of the species, as a fairly rare element in high diversity faunas (see Section 7), which suggests the prevalence of ' K ' selection.

Spondylopecten (Spondylopecten) globosus (Qufnstedt 1843) Pl. 3, Figs. 22-24; text fig. 88

Synonymy

pv" 1843 Pecteng globosus sp. nov; QuFnstedt, p. 476.
v* 1852 Pectenglobosis Quensteit; Quenstedt, p. 507. pl. 40, fig. 46 (non fig. 45).
$\mathrm{v}^{*} 1858$ Pectenglobosus QuFnstedt; Quenstedt, p. 755, pl. 92, fig. 20 (non pl. 78, fig. 2).
non 1862 Pecten Globosus Qulenstedt; Thurmann and Étallon, p. 250, pl. 35, fig. 1.
non 1867 Pecten globosus Quenstedt; De Loriol, p. 335, pl. 13, fig. 3.
1874 Pecten cordiformus sp. nov; Gemmellaro and DI Bi.asi, p. 108, pt. 2, figs. 11-15
1875 Pecten cordiformis Gemmellaro and Di Blasi: Gemmellaro, p. 43.
1883 Pecten cordiformis Gemmellaro and Di Blasi; Bоенм, p. 611, pl. 67, figs. 27-29.
1883 Spondylus globostis (Quinstedt); BOEHM, p. 64t, pl. 70, figs. 3, 4.
? 1893 Pecten globosaz Quenstedt; Sifmiradzki, p. 119.
non 1898 Pecten (Spondylopecten) globosus Quenstedt; PHILIPPI, p. 620, texi figs. 6, 7.
1898 Spondylopecten G. Boehmi sp. nov; PHiliplı, p. 620 .

1903 Pecten cordiformis Gemineli ARO and Di Blasi; RFMFS, p. 202, pt. 29, fig. 6.
1903 Pecten G. Boehmi Plili tpl; Remes, p. 205.
non 1903 Pecten (Spondylopecten) globosks QUENSTEDT; Remfs, p. 205.
? 1905 Pecten (Chlamys) globosus Quenstedt; Kilian and Guebhard, p. 817
1910 Pecter globosus Quenstedt; Lissajous, p. 362. pl. 10, fig. 5.
non 1913 Pecten globosus Qurnstridt; Joukowsky and Favre, p. 40, pl. 17, figs. 3-6.
1920 Pecten cordiformis Gemmiliaro and Di Blasi; Faure-Margufrit, p. 57.
non 1920 Pecten (Spondylopecten) globosus Quenstedt; Faurf-Marcuirit, p. 60.
1926 Spondylopetten globosus (Quenstedt); Staeschi, p. 110.
non 1931 Pecten (Spondylopecten) globosus QUENSTEDT; Yin, p. 118, pl. 12, figs. 3-6.
p 1931 Pecten cordiformis Gemmeliaro and Di Biasi; Yin, p. 119, pl. 12, fig. 7, pl. 13, fig. 7.
1936 Spondylopecten globosus (QUENSTENT); DFCHAS faUX, p. 66.
? 1959 Spondylopecten globosus (Quenstedt): HOLDER and ZiEGler, p. 165.

- 1975 Spondylopecten globosus (QLeNSTEDT); YAMAN1, p. 62, pl. 3, figs. 7-9.

Lectotype of Peeten globosus Quenstedt 1843, p. 476 designated herein; GP1T 2-40-46; figured Quinstelot, 1852, pl. 40, fig. 46, 1858, pl. 92, fig. 20; Pl. 3, Figs. 22, 23 herein; $\mathrm{H}: 23, \mathrm{~L}: 25, \mathrm{AH}: 7.5, \mathrm{PH}: 5.5$, I: 16, C: 24, UA: 94, PL: 63; Malm f (L. Tithonian; see p. 105), Natheim, Swabia.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

, Beide Schalen sind aufgebläht, wie die gewölbte Schale des P. gryphaeatus der Kreide, und nähern sich insofern aufeinander geklappt der Kugelform, die Rippen markiert und nie dichotum, große Symmetric, wie bei Pectunculus, auch ste-
hen die Wirbel weit voneinander. Dem Pecten subpunctatus sehr verwandt, nur werden sie viel größer.

Bemerkenswert sind die Formen welche dem Pecten aequicostatus Sow. (gryphacatus Schl.) gleichen, und die namentlich im weißen Korallenkalke von Arnegg wie von Au bei Kelheim in so grol?er Häufigkeit vorkommen. Auch in den kieseligen Kalken von Nattheim fehlen sie nicht, und auffallenderweise erheben sich neben dem deltaförmigen Schioßmuskelloch zwci Zähne, von denen besonders der vordere sehr lange und kräftig wird.

2. AMENDED DIAGNOSIS

Distinguished from all other species oi S. (Spondy lopecten) by the number of plicae (51-71).

3. AMENDED DESCRIPTION

Essentially similar to S. (S.) cardinatus. Differing by the diagnostic larger number of plicae (see Section 2), whose median value, if anything, oscillates phyletically (see Section IO), and by the generally lower umbonal angle and higher convexity. There is insufficient data from which to accurately assess the range of variation in the latter parameters. The lectotype of the species (see above) probably exhibits fairly typical proportions. The maximum height is 26.9 mm (Stafiriti, 1926).

4. DISCUSSION

Quf virfur's (1843) original hypodigm for 'P.' globosus is a matter of some doubt. A comparison with 'P.' subpunctatus Munstr combined with a reference to very high convexity in the original description (see Section 1) suggests that it included forms referable to both S. (S.) subpunctatus and the species described in Section 3. This interpretation is borne out by the fact that the Quenstedet Collection (GP1T) used to contain two specimens labelled ' P.' globosus, one with moderate convexity and about 30 plicae and the other with high convexity and about 60 plicae, and by the fact that both specimens were figured by QuF Nstent as 'P.'globosus in later works $(1852,1858)$. For the purposes of this work it is desirable to restrict Qur NSTEDT's taxonomic species by designating one or other specimen as the lectotype. However, following Recommendation 74A of the ICZN (N. R. Srollet al., 1964) due weight is given in the choice to valid restrictions of the species by previous authors, as discussed below.

Thurvann and Étallon (1862), de Luriol (1867), Jounowsky and Fivrf (1913), Philippl (1898), Reufs (1903), Faure-Marguerit (1920) and Yín (1931) all apply Qur.vsTFDT's specific name to forms with about 30 plicae see P.99). However, only in the last four cases is it clear, from the fact that other specimens with about 60 plicae are referred to different species, that these authors actually restricted their concept of QUF NatFDt's taxonomic species to forms with about 30 plicae. In fact, Philiplis citation of the specimen figured in pl. 92, tig. 20 of Der Jura (the form with about 60 plicae) as type for his restricted concept of the species effectively re-expands his hypodigm to that probably envisaged originally by Qurnstrat.

Bofhis (1883), Lissajous (1910), Stafschf (1926), Df chaseaux (1936) and Yamani (1975) apply Quenstedt's specific name to forms with about 60 plicae. All but Lissajous give a clear indication that their concept of Quf nstedt's taxonomic species is restricted to such forms by referring other specimens with about 30 plicae to different species. Stafscht suggests moreover that Quenstedt himself may have intended such a restriction in Der Jura. It is Staesche's contention that in the latter work (1858), in which 'P.' aequatus, a new species with about 30 plicae is also figured, Quevstedt applied the name ' P.' globosus by mistake to an illustration of the cardinal area of a form with about 30 plicae which he really meant to label as a second figure of ' P.' aequatus. On these grounds Staesche draws the logical conclusion that in 1858 Quensteut restricted his hypodigm for ' P.' globosus to forms with about 60 plicae. There is however no a priori reason to think that Quenstedt made a nomenclatural error and furthermore there are no grounds for believing, as Staesche seems to imply, that Quenstedt intended such a restriction all along. The description in 1843 and the illustrations in 1852 belie this reasoning (see above). On the available evidence one must draw the conclusion that Quevstedt erected ' P.' aequatus as a species distinct from the original specimen of ' P.' globosus with about 30 plicae.

In summary it can be said that previous restricted usage of Quenstent's taxonomic species is, on the basis of specimens described in the literature studied by the author, apparently equally divided between forms with about 30 and forms with about 60 plicae. Weight of numbers therefore gives no lead in the selection of an appropriate lectotype for ' P.' globosus. The first author to apply Quenstedt's specific name in a clearly restricted sense was Bоенм (1883) who used the name for forms with about 60 plicae. Therefore on grounds of historical precedence the original specimen with about 60 plicae is the most appropriate choice for the lectotype of 'P.' globosus. Since this specimen appears to be the only one remaining of the two originally housed in the GPIT such a selection also avoids any possible need to designate a neotype. Accordingly the specimen with about 60 plicae (Pl .3,

Figs. 22, 23) is herein designated as lectotype. As a result Spondylopecten G. Bochmi Philipl, which was erected for this and another specimen (following restriction of QueNs. TEDT's taxonomic species to the original specimen with about 30 plicae), would seem to become a junior objective synonym, and if so must be rejected.

Non-synonymous and questionably synonymous usages of Quenstedt's specific name quoted in the synonymy are discussed on p. 99. All other usages are within the present author's hypodigm for S. (S.) globosus (see Section 3).
' P.' cordiformis Gevhellaro and Di Blast is inseparable from S. (S.) globosus by its inflation (C/L: 0.94) and number of plicae (56). Nevertheless Bofms (1883) considered that the two species should be placed in separate genera (cordiformis in Pecten, globosus in Spondylus) on the basis of the lack of a cardinal area in the former and of a byssal notch in the latter. However, Stafsche (1926) has pointed out that this is merely the result of poor preservation and that therefore the species cannot be separated at any level. Of the forms referred to Grmmfllaro and Di Blasi's species by Yin (1931) only one, with 60 plicae, is referable to S. (S.) globosus. The remainder, with 42-48 plicae, must be assigned to S. (S.) cardinatus.

5. STRATIGRAPHIC RANGE

An indeterminate number of specimens from the U. Oxfordian of the Mâconnais (Lissajous, 1910; Dichasfaux, 1936) constitutes the first certain record of S. (S.) globosus. Yamani (1975) states that the species occurs in the Callovian of S . France but provides no evidence in the form of a reference. His record of the species from the Kimmeridgian of S. Germany is also doubtful since it is probably based on Qufnstift's (1843) description of 'P.' globosus from Kelheim (see Section 1), which may in fact refer to S. (S.) subpunctatus (see Section 4). No museum specimens of S. (S.) globosus are known from the later locality but examples of S. (S.) subpunctatus are quite common. A specimen of S. (S.) globosits labelled 'Malm ϵ, Ulm' in the GPIT could well be from the L. Tithonian rather than the Kimmeridgian, as the

Text fig. 88: Spondylopecten (S.) globosus - European distribution.
label implies. Museum specimens from the L . Tithonian reef facies in S. Germany are invariably incorrectly labelled in this way. Since the only other record of Kimmeridgian S. (S.) globosus (Holder and Zifgler, 1959) is of questionable validity (see p. 99) there are no unequivocal occurrences of the species in the stage.
S. (S.) globosus becomes locally common in the L. Tithonian and continues thus into the U. Tithonian (Gfumfllaro and Di Blasi, 1874; Gfumellare, 1875; Boehu, 1883: Faurf-Margeurit, 1920; Yin, 1931).

6. GEOGRAPHIC RANGE

S. (S.) globosus is unknown outside Europe. Within Europe (text fig. 88) the species is restricted to the central and southern parts of the continent, where its local distribution is intimately linked with that of coralliferous deposits (see Sections 7, 8).

7. DESCRIPTION OF ECOLOGY

The records of S. (S.) globosus from the U. Oxfordian of the Mâconnais (see Section 5) are from coralliferous limestones. The range of plical variation is apparently from 55-65 (Dechaseaux, 1936).

In the L. Tithonian S. (S.) globosus is reported to be common in the coral reefs at Nattheim, Sirchingen and Wittlingen in Swabia (Staeschf, 1926) and to also occur in the same facies at Neuburg in Franconia (Yamani, 1975). The range of plical variation is from 51 (GPiT) - 65 (STAFSCHF, 1926) and the maximum height is 26.9 mm (Stafache, 1926). The species is also known from coral reef facies in the U. Tithonian of S. France (Falre-Marguerit, 1920; Yín, 1931), Sicily (Gemmellaro and Di Blasi, 1874; Gemmellaro, 1875) and Czechoslovakia (Boehm, 1883; Remes, 1903) where it is particularly abundant and reaches a maximum height of 24 mm (BM L23886). The range of plical variation in U . Tithonian forms is from 56 (Gemmellaro and Di Blasi, 1874) to 71 (BM LL17205). The typically associated fauna in Tithonian occurrences of S. (S.) globosus is described on p. 88.

There are no certain occurrences of S. (S.) globosus apart from those discussed above.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that S. (S.) globosus was a coral reef-dwelling species. However, by no means all such reefs were colonised. The absence of the species from reef and reef-derived sediments in the Oxfordian of England, N. France and N. Germany (see Section 6) could perhaps be the consequence of a temperature restriction. However, the inconsistent distribution in coral reefs at approximately the same palaeolatitude (presence in the Tithonian of Czechoslovakia and S. Germany, absence from the Oxfordian of the E. Paris Basin, Oxfordian and Kimmeridgian of the Jura, Kimmeridgian of La Rochelle and probably also Kelheim) argues against this hypothesis. While the general reef structure might be the cause of the lack of S. (S.) globosus at La Rochelle (see p. 88) it cannot be invoked as an explanation for absences from the other reefs, in each of which at least one of the other S. (Spondylopecten) species is known to occur
commonly. Competitive exclusion by S. (S.) palinurus is another possible explanation since the latter is present at all of the above localities where S. (S.) globosus is absent, apart from Kelheim. Moreover, the two species are not known to occur together in large numbers at any locality. However, if Spondylopecten species occupied different microhabitats (see p. 89) it seems unlikely that they would have competed and indeed there is little evidence of competition in general (see p. 103). An alternative explanation for the distribution of S. (S.) globnsus in terms of a commensal relationship with one particular coral species must also be considered doubtful on the basis of the failure of such a hypothesis (see p. 96) to account for the irregular distributions of other S. (Spondylopecten) species. There is, however, no specific reason for rejection in the case of S. (S.) globosus.

9. FUNCTIONAL MORPHOLOGY

Little can be added to the general interpretation of functional morphology in Spondylopecten presented on p. 89.

The maximum height of 26.9 mm indicates that the species could have remained byssate throughout ontogeny (see p. 101) while the inflated form renders it likely that if it unattached itself at all, S. (S.) globosts could only have been a very inefficient swimmer.

Such phyletic changes in height and plical variation as may have occurred (see Section 10) are too small to have had any effect on the mechanies of the shell (cf. pp. 97, 101).

10. ORIGINS AND EVOLUTION

The most likely ancestor for S. (S.) globosus is S. (S.) cardinatus. A 'genetic revolution' presumably accompanied speciation since the lack of ancestral allometry rules out evolution by heterochrony. There is no evidence that speciation occurred gradually, but some suggestion that it occurred, at least on a small scale, allopatrically, since the first occurrence of S. (S.) globosus is as an isolated population (U. Oxfordian, Matconnais) apparently at the edge of the contemporaneous geographic range of S. (S.) cardinatus.

The apparent phyletic oscillation in the median number of plicae (60, U. Oxfordian; 58, L. Tithonian; 63/6t, U. Tithonian) may well be more a consequence of the limited number of museum specimens available to the author than a reflection of a real phenomenon.

Museum specimens indicate no significant change in maximum height in the passage from L . $(26.9 \mathrm{~mm})$ to $\mathrm{U} .(24 \mathrm{~mm})$ Tithonian.

Genus CAMptonectes Agassiz in Mffk $186+$
Type species. SD; Stoliczka 1871, p. 425 ; Pecten lens J. Sowerby 1818, p. 3, pl. 205, figs. 2, 3; Corallian Beds (Oxfordian) of the Oxford district.

AMENDED DIAGNOSIS

Part or all of exterior ornamented with fine, oblique, divergent, curved, crenulated, commonly punctate striae and concentric lines or raised laminae. L. Jur. - U. Cret., cosmop.

DISCUSSION

Hertlein's (1969: N351) diagnosis for Camptonectes has been slightly altered so as to expressly include forms (e. g. C. (C.) subulatus, C. (Caniptochlamys) clathratus) which only have the distinctive divaricate ornament on a small part of the shell. Such forms are undoubtedly related to the more typical members of the genus well provided with divaricate ornament. Examples of C. (C.) subulutus which possess only a small byssal notch (e. g. Pl. 4, Fig. 7) closely resemble the contemporaneous species Entolium (E.) lunare. They may, however, be distinguished by the features described on p. 35 thus there is little evidence to support Staesche's (1926: 55) contention that Camptonectes and Entolium are convergent in the L. Jurassic.

Subgenus CAMPTONECTES s.s.

(Errors Campstonectes von Teppner 1922 [nom. null.] Campitonectes Salisbury 1939 [nom. null.] Camponectes Vyalov and Korobkov 1939 [nom. null.])

AMENDED DIAGNOSIS

Concentric sculpture of fine growth lines. L. Jur. (Hettang.) - U. Cret. (Maastricht.), cosmop.

DISCUSSION

In his diagnosis, Hertlein (1969: N351) stated that the first occurrence of C . (Camptonectes) was in the U. Lias (Toarcian). C. (C.) subulatus and C. (C.) auritus are known, however, from the lowermost horizons in the Lias.

In well preserved material four groups may be distinguished in Jurassic C. (Camptonectes) on the following basis:

1. Sub-ovate disc, fine divaricate striae on all parts of disc (= C. (C.) virdunensis).
2. Sub-orbicular dise, fine divaricate striae on all parts of $\operatorname{disc} 6=C$. (C.) auritus).
3. Sub-orbicular disc, coarse divaricate striae on all parts of disc (= C. (C.) laminatus).
4. Sub-orbicular disc, fine divaricate striae restricted to anterior and posterior margins of disc (=C. (C.) subulatus).
As pointed out by Arkell (1930a), Group 3 may also be distinguished from Group 2 by the presence of comarginal lamellae on the anterior auricle of the left valve. Contrary to Arhell's opinion lamellae are not consistently developed on the posterior auricle of the right valve in Group 3 and it is not possible to distinguish the two groups on the basis of H / L (text figs. 98, 108) or H/UA (text figs. 99, 109). Group 3 almost entirely replaces Group 2 in the Bathonian of Europe yet there are no certain records of Group 2 elsewhere to evince a migration. The possibility therefore that the coarser ornament distinguishing Group 3 is merely an ecophenotypic response of Group 2 to Bathonian environments cannot be entirely discounted. An analysis along the lines adopted for

Radulopecten vagans (see Johnson, 1981) could be used to text this hypothesis. However, until this is undertaken it seems preferable to treat the two groups as separate species. A similar approach is taken for Group 1, in which the high H/L (text fig. 118) and H/UA (text fig. 119) might merely be an ecophenotypic response of Group 2 to the coral reef habitat. Recent species from such environments often take on an elongated shape as the result of the physical restriction on growth imposed by a dense coral framework (W ${ }_{\text {ALLER }}$, 1972b).

Although within Group 2 there are systematic variations in metric proportions with horizon and geography these are more easily interpreted as an expression of respectively phyletic evolution and ecophenotypic variation (see p. 117) in a single species rather than as a result of the existence of numerous species within Group 2.

Camptonectes (Camptonectes) subulatus (MUNSTER 1836) Pl. 4, Figs. 3-5, 7, 8, ?Figs. 6, 9; text figs. 89-97

Synonymy

? 1833 Pecten textlis sp. nov; Munster in Goldfuss, p. 43, pi. 89 , figs. 3a-d.

1836 Pecten Stubulatus sp. nov; MUNSTER in GOldfuss, p. 73, pl. 98, figs. 12d-c.
v* 1836 Pectert caluws sp. nov; Goldfuss, p. 74, pl. 99, figs. la-c.
1836 Pecten substriatus sp. nov; ROemer, p. 71.
? 1839 Pecters dextilis Munster; Roemer, p. 28, pl. 28, figs. 24a-c.
v* 1850 Pecten Castor sp. nov; d'Orbigny, v. 1, p. 220 (Boule, 1907, v. 2, p. 167, pl. 23, fig. 15).
(?) 1850 Pecten subulatus MUNster; D'Orbigny, v. 1, p. 257.
(?) 1850 Pecten calvirs GoldFuss; D'Orbigny, v. 1, p. 257.
? 1858 Pecten amatus sp. nov; Andler, p. 644.
$\mathrm{v}^{* ?}$? 1858 Pecten disparilis sp. nov; Quenstedt, p. 47, pl. 4, figs. 8, 9.
v* 1858 Pecten punctatissimus sp. nov; QUENSTEDT, p. 79, pl. 9, fig. 14.
v* 1858 Pecten strionatis sp. nov; Quenstedt, pp. 147, 183, pl. 18, fig. 21, pl. 23, fig. 2.
? 1858 Pecten Trigeri sp. nov; Oppel, p. 103.
1863 Pecten subulatut MUNSTER; SCHLONBACH, p. 544.
? 1865 Pecten punctatissimus QUeNSTEDT; Terquem and Piette, p. 103, pl. 12, fig. 62.
1865 Pecten jamoignernsis sp. nov; TERQUEM and Piftte, p. 104, pl. 12, figs. 20, 21.
v*? 1866 Pecten Etheridgii sp. nov; Tawney, p. 81, pl. 3, fig. 4.
1870 Pecten Lobbergensis sp. nov; EmERSON, p. 318, pl. 9, figs. 4, 4a, 4b.
(?) 1871 Pecten subulatus MUNSTER; Brauns, p. 393.
(?) 1876 Pecten calvus GOLDFUSS; TATE and BLAKE, p. 362.
(?) 1876 Pecten punctatissimus QuensTedt; Tate and Blake, p. 362.
1876 Pecten Lobbergensis Emerson; Tate and Blake, p. 362.
(?) 1876 Pecten substriatus ROEMER; TATE and BLAKE, p. 362.

1878 Pecten (Amusium) Bellampensis sp. nov; GEMmellaro and Di Blasi, p. 403, pl. 30, figs. 15, 16.
1881 Pecten Tullbergi sp. nov; Lundgren, p. 28, pl. 5, figs. 11, 12.
v* 1884 Pecten punctatus sp. nov; Simpson, p. 171.
? 1888 Pecten Lundgreni sp. nov; MOBERG. p. 35, pl. 1, figs. 27-32.

Pecten subulatus Munster; Moberg, p. 36, pl. 1, fig. 33.
1895 Pecten Rinks sp. nov; Lundgren, p. 200, pl. 3, fig. $1+$.
? 1906 Pecten cfr. Bellampensis Gemmellaro and Di BLaSi; FuClini, p. 617, pl. 11, fig. 1.
(?) 1907 Pecten (Entolium?') calvus GOLDFUSS; JOLY, p. 76.

1909 Pecter (Chlamys) subulatus MUNSTER; Trauth, p. 90.
(?) 1916 Pecten strionatis QUFNSTEDT; JAWORSK1, p. 417.
? 1917 Pecten tingensis sp. nov; Tilmann, p. 674, pl. 2t, fig. 6.
v* 1923 Pecten dehmerrsis sp. nov; ERNST, p. 54, pl. 1, figs. 10, 11.
1923 Pecten (Pleuronectites) sublaevigatus sp. nov; ERNST, p. 57, pl. 1, fig. 9.
1926 Chlamys (Camptorectes?) cf. lobbergensis (EMERSON); COX, p. 180.
? 1926 Chlamy Trigeri (Oppel); Staeschi, p. 56.
v 1926 Chlamys subulata (MUNSTER); Staesche, p. 57, pl. 2, figs. 9, 10, pl. 5, fig. 6.
v non 1926 Chlamys calva (GOLDEUSS); Staesche, p. 58, pl. 2, figs. 11, 12.
? 1926 Chlamys substriata (ROEmer); Staesche, p. 63.
1926 Chlamys punctatissima (Quenstedt); Staesche, p. 73.
v 1926 Camptonectes aff. sublaevigato (ERNST); StaESCHE, p. 75, pl. 3, figs. 1, 8, 11.
(?) 1928 Chlamys substriata (ROEmFR); COX, p. 242.
v 1934 Chlamys substrata (ROEMER); KUHN, p. 472, pl. 18, figs. 6a, 6 b .
(?) 1934 Chlamys substrata var. nnki (LUNDGREN); Rosenkrantz, p. 113.
1934 Camptonectes aff. sublaevigatus (ERNST); ROSENKRANTZ, p. 117.
v 1935 Chlamys substriata (ROemer); KUnN, p. 246, pl. 12, fig. 35.
1936 Pecten (¿Chlamys) jamoignensis TerQuem and Piette; Dechaseaux, p. 28.
1936 Pecten (?Chlamys) subulata Munster; DechasEAUX, p. 28.
(?) 1936 Chlamys?punctatissmms (Quenstent); DechasEAUX, p. 29.
v 1936 Campionectes sp; DeChaseaux, p. 29, pl. 4, figs. 7, 8.
(?) 1942 Chlamys substrata var. rmki (LUNI)GREN); ROSENKRANTZ, pp. 23, 29, 30, 32, 38.
1948 Pecten (Camptonectes) sp; DUBAR, p. 161, pl. 13, fig. 2.
1951 Chlamys subulata (Munster); Troedsson, p. 212, pl. 20, fig. 17.

1951 Chlamys tullbergi (Lundgren); Troldsson, p. 213, pl. 23, figs. 5, 6.
non 1951 Entolium calcum (GOLDEUSS); Troedsson, p. 217, pl. 20, figs. 9-13.
non 1951 Entolium Iundgreni (Moberg); Troensson, p. 218, pl. 20, figs. 4-8.

1956 Chlamys subulata (MUNSTER); Melville, p. 121, pl. 5, fig. 3.
non 1956 Chlamys subulata securis (Dumortier); MelVIlle, p. 121, pl. 5, figs. 4. 5.
1956 Chlamys ?calva (Goldfuss); Melville, p. 122, pl. 5, figs. 1, 2.
1956 Camptonectes jamaignensis (Terquem and Piette); Melville, p. 123.
1956 Camptonectes lolbbergensis (Emerson); MeiVille, p. 123, pl. 5, fig. 6.
v 1956 Camptonectes mundus sp. nov; Melville, p. 124, pl. 1, figs. 1-4.

Camptonectes lobbergensis (Emerson); Hal lam, p. 561 .
(?) 1966 Entolum cf. subulatum (MUNSTER); BEHMEL and Geyer, p. 26.
1967 Camptonectes lohbergensis (EMERSON); BERRIDGE and IVimey-COOK, p. 160.
1967 Camptonectes mundus Melville; Berridge and Ivimey-COOK, p. 160.
(?) 1967 Chlamys subulata (MUNSTER); BERRIDGE and IVIMEY-COOK, p. 160.
(?) 1968 Chlamys (?) calva (GOLDFUSS); WOBBER, p. 306.
(?) 1968 Chlamys subulata (MUNSTER); WObBER, p. 306.
(?) 1971 Chlamys subulata (MUNSTER); HALLAM, pp. 242, 243.
? 1972 Camptonectes (Camptonectes) fromageti sp. nov; Hayami, p. 195, pl. 34, figs. 5-8.

No trace of the type material of Pecten subulatus Munster in Goidfuss 1836, p. 73, pl. 98 , figs. $12 \mathrm{a}-\mathrm{c}$ has yet been found in the Munster/Goldfuss Collections in BSPHG and GPIB. The material was derived from the 'Liaskalk' (L. Jurassic) of S. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa oblique ovali aequivalvi inaequilaterali con-vexo-plana laevi, striis radiantibus et concentricis vix conspicuis, auricula antica elongata basique sinuata.

E montibus Bavaricus et Wurtembergicis M. M.

Gleichklappig, schief oval-kreisrund, flach-convex, glatt und glänzend. Durch Vergrößerung erkennt man sehr zarte, gedrängte konzentrische Streifen und einige ausstrahlende Linien. Die Ohren sind in etwas abweichender schiefer Richtung abgeschnitten, die hintern sehr kurz, die vordern aber weit über den Rand hinaus verlängert.

Findet sich in Liaskalk bei Altdorf, Amberg, Ellwangen und Wasser-Allingen."

2. AMENDED DIAGNOSIS

Distinguished Irom C. (C.) auritus and C. (C.) laminatus by the restriction of surficial ormament to the anterior and

Text fig. 89: Camptonectes (C.) subulatus - height/length.

Text fig. 90: Camptonectes (C.) subulatus - height/umbonal angle.
posterior margins. Distinguished from C. (C.) virdunensis by the more orbicular disc.

3. AMENDED DESCRIPTION

Disc sub-orbicular, slightly higher than long at all stages in ontogeny (text fig. 89); maximum height 52.5 mm (GPIT). Umbonal angle very variable (text fig. 90) but increasing during ontogeny to produce concave dorsal margins. Disc flanks very low.

Equilateral; inequivalve, low convexity, left valve slightly more convex than right.

Intersinal distance variable, greater in left valve than right (text figs. 91, 92) but increasing isometrically in both. Depth of byssal notch very variable (text fig. 93) but usually increasing isometrically.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. Posterior auricles meeting hinge line at an obtuse angle and disc at an acute angle. Anterior auricles meeting hinge line at about 90°; that of left valve meeting disc at an acute angle, that of right valve meeting disc at 90° or
more. All auricles ornamented with fine comarginal striae and where well preserved, fine divaricate striae.

Height of anterior auricle and length of posterior hinge increasing with approximate isometry (text figs. 94, 95).

Text fig. 91: Camptonectes (C.) subulatus - intersinal distance on left valve/length.

Length of anterior hinge possibly increasing at a decreasing rate (text fig. 96).
Centre of disc exterior smooth in both valves. łn well preserved specimens anterior and posterior margins, particularly in the dorsal region, bearing fine divaricate striae (Pl .4 , Fig. 3), rendered 'punctate' by the intersection of comarginal striae. Inner shell layers formed into radial striae of low amplitude (Pl. 4, Fig. 8).
Shell very thin. Outer layer including at least one sub-layer of divaricate fibres.

Text fig. 92: Camptonctes (C.) subulatus - intersinat distance on right valve/length.

4. DłSCUSSłON

The taxonomy of the weakly omamented L. Jurassic Pectinidae has heen a subject of considerable confusion. Distinction at the generic level is dealt with on pp. 35, 107. The proliferation of names at the specific level has resulted largely from a failure to appreciate the wide but continuous range of variation in metric proportions of the species described in Section 3 and the range of sculptural patterns in the latter resulting from abrasion and dissolution of the thin shell. Four main sculptural patterns (analogous to those observed in Propeamussium (P.) pumilum by Holder (1978)) can be recognised in the passage from complete shell preservation to internal mould.
a) Perfect preservation produces shells conforming to the description in Section 3.
b) Loss of the very thin shell layer bearing 'Camptonectesornament' on the lateral dise margins and auricles, leaves a smooth but relatively thick shell bearing traces only of comarginal striae (PI. 4, Figs. 4, 7).
c) Loss of a further shell layer results in the exposure of radial striae which form a reticulate pattern with the comarginal striae (Pl. 4, Fig. 5; postero-ventral of centre), this standing out as rows of comarginal 'punctae' (cf, a) in suitably fine sediment.
d) Loss of the remainder of the outer layer leaves only the radial striae of the inner shell layers which persist to the internal shell surface and thus appear on moulds (Pl. 4, Fig. 8).

Paired valves often exhibit different sculpture, with the right valve usually representing a more advanced state of abra-
sion, presumably as the result of more frequent contact with the substratum during life.

BM L40676 (Pl. 4, Fig. 5) exhibits, in different parts of the shell, each of the first three preservation states referred to above, thus convincingly demonstrating that they do not reflect genetic differences. That forms corresponding to preservation state d) are conspecific is made clear by the fact that their metric proportions (specimens marked with a glyph in text figs. 89-96) are inseparable from more perfectly preserved specimens. However, the development of fine radial striae is not restricted to the species under discussion but is also seen in, for instance, small or abraded examples of the 'fine' phenotype of Chlamys (Ch.) textoria. Thus, where original material and figures are poor or lacking and descriptions inadequate, there remains considerable taxonomic uncertainty (see below).

Type and original specimens and figures of type specimens apparently corresponding to preservation state a) are: -

1. The holotype (OD) of Camptonectes mundus Melville (IGS 28760).
2. The original of C. sp. Dechasfaux (NM).
3. The original figure of C. (C.) fromageti Hayami.
4. The original figure of 'Pecten' lundgreni Moberg.

In each of the above cases metric proportions plot within the ranges of text figs. 89-96. Trofdsson (1951) referred Moberg's species to Entolium. Since he may have had access to the type material it is possible that the appearance of divaricate striae on the original figure may be a misrepresentation of the divaricate fibres which are present in the outer shell layer of Entolium as well as the species described in Section 3. In the case of C. (C.) fromageti (a species described from Vietnam) it is possible that the lack of 'Camptonectes-ornament' in the median part of the shell is not due to an original absence but to wear of what was previously a more completely ornamented shell.

Text fig. 93: Camptonectes (C.) subulatus - depth of byssat notch/length.

Type specimens and figures of type specimens corresponding to preservation state b) are: -
5. A syntype of 'P.' calvus Goldfuss (GPłB 609; Pl. 4, Fig. 4),
6. The two known syntypes of 'P.' dehmensis Ernst (GPIG).

Text fig. 94: Camptonectes (C.) subulatus - height of anterior auricle/length.
7. The original figure of ' P.' sublaevigatus Ernst.
8. The original figure of ' P.' rinki Lundgren.
9. The original figure of ' P.' (Amusium) Bellampensis Gemmellaro and Di Biasi.
10. The original figure of ' P.' tingensis Tilvann.

Numbers 5-9 plot within the ranges of text figs. 89-96. Most of the 16 syntypes of ' P.' tingensis (GPIB; from Peru) are unlike Tilmann's figure in that they display radial and, in some cases, comarginal ornament. It is therefore very doubtful whether ' P '. tingensis can be referred to the species described in Section 3. Goldfuss' specific name calvus has been applied to figured specimens which by the configuration of the auricles are clearly referable to Entolium (E.) lunare (Staesche, 1926; Trofdsson, 1951). With the evident possibility of confusion unfigured references to Goldfuss' species in d'Orbigny (1850), Tate and Blake (1876), Joly (1907) and Wobber (1968) cannot safely be synonymised with the species under discussion. Fucini's (1906) figure of Gemmellaro and D_{1} Blasi's species may also refer to E. (E.) lunare and Andler's (1858) unillustrated species 'P.' amatus, described only as a smooth flat shell with comarginal striae, has a similarly equivocal status.

Text fig. 95: Camptonectes (C.) subulatus - posterior hinge length/length.

Text fig. 96: Camptonectes (C.) subulatus - anterior hinge length/length.

Type specimens and figures and descriptions ol type speci mens corresponding to preservation state c) are:-
11. The holotype (M) of 'P.' punctatissimus Quenstedt (GPIT).
12. The original figure of ' P.' Lobbergensis Emerson.
13. The original description of ' P.' substriatus Roemer.
14. The single observed type of ' P.' punctatus Simpson (WM 604).

Metric proportions of 11 and 12 plot within the ranges of text figs. 89-96. Both Quenstedt's and Roever's specific names have been applied (by respectively Terquen and PiftTE, 1865 and Staesche, 1926) to quite strongly striate specimens which may be referable to Chlamys (Ch.) textoria. Therefore, bearing in mind the remarks made on p .110 it seems wise to regard inadequately characterised references to these species in Tate and Blake (1876), Cox (1928), Rosenkrantz (1934, 1942), and Dechasfaux (1936) as of uncertain taxonomic position.

Type specimens and figures and descriptions of type specimens corresponding to preservation state d) are: -
15. The sole observed syntype of ' P.' disparilis Quenstedt (GPIT 4-4-8; Pl. 4, Fig. 6).
16. A syntype of ' P.' strionatis Quenstedt (GPIT).
17. The holotype (M) of 'P.' Castor d'Orbigny (MNS).
18. The original figure of ' P.' subulatus Munster.
19. The original figure of 'P.' jamoignensis Terpuem and Piette.
20. The original figure of 'P.' Tullbergi Lundgrev.
21. The original figure of ' P.' Etheridgii Tawney
22. The original figure of ' P.' textilis Munster.
23. The original description of ' P.' Trigeri Oppel.

Numbers 15-20 have metric proportions which plot within the ranges of text figs. 89-96. However, ' P.' disparilis displays particularly prominent radial striae and bearing in mind its horizon of derivation (Planorbis zone) might be an example of Chlamys (Cb.) valoniensis. The same may also be the case for 'P.' Etheridgii (syntypes: IGS 7829, 91801; Pl. 4, Fig. 9) which may also have an anomalously low L/PH (21). N/L of 'P.' textilis (22) is similarly low and Roemer (1839),
who may have examined the syntypes, has applied the name to forms which are reminiscent of Ch . (Ch.) textorla. Bearing in mind the remarks made on p. 110 Munster's species can only tentatively be placed in synonymy. The same approach must also be adopted for 'P.' Trigeri (23) which has been applied by Stafschf (1926) to specimens whose description recalls that of the 'fine' phenotype of Cb . (Ch.) textoria.

In the uncertainty over the affinities of 'P.' textilis the earliest available name for the species described in Section 3 is ' P.' subulatus Munster. The type material appears to be lost thus a neotype may need to be designated. Bearing in mind the remarks made on p. 110 with respect to radially striate specimens, inadequately characterised references to MuNSTER's species in d'Orbigvy (1850), Brauvs (1871), Moberg (1888), Bfhmel and Geyer (1966), Berridge and Ivimey-Coek (1967), Wobber (1968) and Hallaw (1971) and to Quenstedt's ' P.' strionatis in Jaworski (1916), must be treated with some scepticism. Melvillf's (1956) 'Ch,' stibulata securis is discussed under Ch. (Ch.) textoria.

5. STRATIGRAPHIC RANGE

The earliest record of C. (C.) subulatus is a single specimen from the pre-Planorbis beds of Gloucestershire (BML L77305). Thereafter the species becomes common in the Planorbis zone (Hettangian) of S. Germany (Stafschf, 1926) and in suitable sediments (see Section 8) is thus found in all stages until the
U. Pliensbachian. There are no unequivocal records from the L. Toarcian but seven specimens are known from the U. Toarcian of Germany (Ernst, 1923; Staesche, 1926; GPIG). D'OrbigNy's (1850) records from the Toarcian of Germany are of doubtful status (see p. 71) but Rosi \hr $4 \backslash t 7$. (1934) records examples of C. (C.) subulatus from the Toarcian of Greenland.
Sialsull (1926:75) rcords a specimen from the Aalenian whose H/UA (24) and ornamentation is indistinguishable from that of C. (C.) subulatus. However, other weakly ornamented Aalenian examples of C. (Camptonectes) such as BM L+1942 have a higher H/UA (25) and are probably abraded specimens of C. (C.) atritus. Thus Staesche's record must be considered questionable in the absence of a figure or a specimen in his collection (GPIT) conforming to the description.

6. GEOGRAPHIC RANGE

Although occurring over a large area of Europe (text fig. 97) C. (C.) subulatus is much more common in the northern parts of the region, implying a possible temperature dependance. Staeschf (1926) commented on the absence of the species from the Planorbis zone of the Rhone basin, thereby implying a northerly derivation. Except for records from Greenland (see Section 5) there are no certain occurrences of C. (C.) subulatus outside Europe (cf. Section 4).

Text fig. 97: Camptonectes (C.) subulatus - European distribution.

7. DESCRIPTION OF ECOLOGY'

In the Hettangian C. (C.) subulatus occurs in sandstones in E. France (Terquem and Piette, 1865; fauna p. 87). Calcarenites are the site of probable occurrences of the species in the Planorbis zone of S. Wales (Wobbfr, 1968). In S. Germany marly limestones of the same age contain common examples of C. (C.) subulatus (Staesche, 1926) reaching a maximum height of 32 mm (GPIT). The species is also common in oolitic limestones of the Angulata zone and L. Sinemurian in the
same area. In the latter substage it attains a maximum height of 30.5 mm (GPIT) and is associated with Entohum (E.) lunare.

In the U. Sinemurian C. (C.) subulutus occurs in the Obtusum zone chamosite oolites of the Frodingham Ironstone (fauna p. 69) but it is greatly outnumbered by E. (E.) lunare. In the Raricostatum zone of Yorkshire C. (C.) subulatus occurs commonly in silty shales in association with Pseudopecten ($P_{s . \text {.) equivalvis, Pseudolimea, Antiquilina, Pinna, }}^{\text {a }}$ Gryphaea, Pleuromya, Procerithium, Tetrarbynchia and be-
lemnites (Sellwood, 1972). E. (E.) lunare is quite rare. Numbers of C. (C.) subulatus are particularly high in the vicinity of large Pinna. A similar association characterises the Jamesoni zone (L. Pliensbachian) of Yorkshire and the U. Sinemurian/L. Pliensbachian sequence in S. Germany where C. (C.) subulatus reaches a maximum height of 37.5 mm (GPIT). In sediments of the same age but with a somewhat restricted benthos (mainly consisting of protobranchs, Inoceramus and Oxytoma [Sfliwood, 1972]) in Dorset, C. (C.) subulatus is rare.
C. (C.) subulatus occurs commonly in shales of the Margaritatus zone (U. Pliensbachian) in Yorkshire where E. (E.) lunare is rare. However the latter species is common and C. (C.) subulatus is rare in U. Pliensbachian sandstones and ironstones. The maximum height attained by C. (C.) subulatus in the substage is 42 mm (GPIT).
Sparse records from the U. Toarcian of Germany (see Section 5) are from grey marlstones containing a somewhat restricted benthic fauna in which C. (C.) subulutus attains a maximum height of 52.5 mm (Stafsche, 1926).
The species is unknown in the low salinity marginal marine deposits of the Hettangian in N. W. Germany (Huchriede, 1967) and W. Portugal (BOHM, 1901) and does not appear until the Raricostatum zone (U . Sinemurian) in the transgressive sequence of the Lossiemouth borehole (Berridge and Ivimfy-Cook, 1967). However, Lundgren (188t) records the species from paralic cyclic sediments in the Hettangian of Scania although it is not clear whether the species occurs in anything but the most fully marine beds. C. (C.) subulutus is not recorded commonly in the area until the L. Sinemurian when conditions were continuously marine (Troedsson, 1951).
C. (C.) subulatus is not known to occur commonly other than in the examples discussed above. However, isolated specimens are widely recorded (text fig. 97).

8. INTERPRETATION OF ECOLOGY

Apart from an apparent abhorrence of the soupy substrates and low oxygen tension associated with bituminous shale deposition (indicated by the absence of the species from the L. Toarcian of Europe) C. (C.) subulatus seems to have been a curytopic species with respect to substrate. However, abundance data indicates a definite preference for argillaceous substrates at least after the L. Sinemurian. Since this is essentially the reverse of the pattern exhibited by Entolium (E.) lunare it is possible that such niche differentiation was caused by competition, perhaps for juvenile attachment sites, between earlier, more eurotypic representatives of the species.

There is little evidence to suggest that C. (C.) subulutus could tolerate the high stress environments associated with low or fluctuating salinity. The scarcity of the species in sediments where the faunal diversity is only somewhat reduced suggests that C. (C.) subulatus could only thrive in the most stable environments. However, in these cases the absence of Pinna, which by its frequent association with C. (C.) subulatus may have served as a byssal attachment site (see Section 9), could be the cause of the scarcity of the species rather than any intolerance of slightly increased stress.

A Recent morphological analogue of C. (C.) subulatus, 'Pecten' alcocki Smith, lives byssally attached to siliceous sponges in the bathyal zone (K vudsen, 1972).

9. FUNCTIONAL MORPHOLOGY

The thin shell, low convexity and minimal ornamentation of all examples of C. (C.) subulatus and the marked byssal notch and small adult size of most, are paradigmatic for a byssally suspended mode of life (tightly fixed).
It is not clear at what size, if any, the Recent analogue 'P.' alcocki loses the ahility to attach by a byssus. However, late populations of C. (C.) subulatus, reaching a maximum height of over 50 mm , must be near the upper limit for this mode of life and may have been forced to recline in the later stages of ontogeny.
Ontogenetic increase in umbonal angle probably facilitated escape from predators by swimming at even the largest sizes. in spite of the juxtaposition of radial and divaricate elements in the shell, strength and stiffness must have been very low, thus it is extremely doubtful whether C. (C.) subulatus could have resisted attempted predation by means of a 'siege' policy.

10. ORIGINS AND EVOLUTION

Stafsche (1926) considered that forms referable to C. (C.) subulatius were derived from Chlamys trigeri (a possible synonym, see Section 4) in the Planorbis zone. He believed the latter species to be synonymous with 'Pecten' simplex Winkler (IS61), a species from the Kössen Beds (U. Trias) of Bavaria. However, 'P.' simplex has strong radial ornament and is unlikely to have close affinities with C. (C.) subulatus. A more likely ancestor for the latter is 'Pleuronectites' laevigatus Schiotheim, a smooth species, common in the M. Trias.

There appear to be no morphological trends in C. (C.) subulatus apart from a general increase in maximum height from 32 mm (Hettangian) to 30.5 mm (L. Sinemurian) to 37.5 mm (L. Pliensbachian) to 42 mm (U. Pliensbachian) to 52.5 mm (U. Toarcian). This, together with a narrowing of the range of favourable substrates, probably indicates the prevalence of ' K ' selection (Gouid, 1977).

The post \mathbf{U}. Toarcian extinction of C. (C.) subulutus may have been caused by the widespread development of shallow water facies over N . Europe, producing unfavourable conditions for late representatives of the species.

Camptonectes (Camptonectes) auritus (Schlotheim 1813)
Pl. 3, Figs. 25-40; text figs. 98-107

Synonymy

1676 Pectinites; Plot, p. 104, pl. 4, fig. 11.
1678 Pectinites; LISTER, pl. 9, fig. 51.
1813 Chamates auritus sp. nov; SChlotheim, p. 103.
$\mathrm{v} * 1818$ Pecten lens sp. nov; J. Sowerby, p. 3, pt. 205, figs. 2, 3.
v: 1818 Pecter arcuata sp. nov; J. Sowerby, p. 4, pl. 205, figs. 5, 7.
1822 Pecten Maltonensis sp. nov; Young and Birl, p. 235, pl. 9, fig. 1.

Text fig. 98: Camptonectes (C.) aurritus - height/length.

v 1833	Pecten comatus sp. nov; Munster in Goldfuss, p. 50, pl. 91, figs. 5a, 5b.	non 1853
1939	Pecten Buchi sp. nov; Roemer, p. 27, pl. 13, figs. 8a, 8b.	1853
1939	Pecten lens J. Sowerby; Roemer, p. 27.	v 1858
1839	Pecten Dechern sp. nov; Roemer, p. 28, pl. 18, fig. 25.	
18.39	Pecten aychatus J. Sowerby; Bean, p. 60.	1860
1839	Pecten lens J. Sowerby; Bean, p. 60.	? 1862
? 1843	Pecten lens J. Sowerby; Quenstedt, p. 337.	
1850	Pecten Lustanicus sp. nov; Sharpe, p. 189, pl. 24, fig. 3.	1862
1850	Pecten Saturmus sp. nov; D'Orbigny, v. 1, p. 284 (Boule, 1910, v. 5, p. 69).	non 1863
- 1850	Pecten Midas sp. nov; D'Orbigny, v. 2, p. 54 (Boule, 1932, v. 21, p. 12, pl. 2, figs. 3-6).	1864 1864
non 1853	Pecten lens J. Suwerby; Morris and I.ycftt, p. 11, pl. 2, fig. 1.	1866

Pecten arcuatus J. Sowerbi; Morris and Lycett, p. 11, pl. 1, fig. 18.

1853 Pecten Saturnus d'Orbigny; Chapuls and De WALQUE, p. 215, pl. 29, fig. 4.
1939 Pecten lens J. Sowerby; Roemer, p. 27. v 1858
1839 Pecten Dechem sp. nov; Roemer, p. 28, pl. 18, fig. 25.
$\begin{array}{lll}1839 & \text { Pecten archatus J. Sowerby; Bean, p. } 60 . & 1860 \\ 18.39 & \text { Pecten lens J. Sowerby; Bean. p. } 60 . & ? 1862\end{array}$
$\begin{array}{lll}1839 & \text { Pecten archatus J. Sowerby; Bean, p. } 60 & 1860 \\ 1839 & \text { Pecten lens J. Sowerby; Bean, p. } 60 . & ? 1862\end{array}$

1862 Pecten Parandieri sp. nov; Etalion in ThurMANN and Étallon, p. 266, pl. 37, fig. 6.

UNSED. P. 322 pl. 44, fig. 12, p. 354, pl. 46, fig. 20, pl. 48, fig. 8, p. 432, pl. 59, fig. 4 (non pl. 59, fig. 3).

1843 Pecten lens J. Sowerby; Quenstedt, p. 337.
Pecten lens J. SOWERBy; COQUAND, p. 70.
Pecten Delessei sp. nov; Etallon in Thurmann and Etallon, p. 266, pl. 37, fig. 6

1864 Pecten lens J. Sowerby; v. SFebach, p. 99
1864 Pecten comatus Munster; v. Seebach, p. 99.
1866 Pecten morini sp. nov; DE LORIOL in DE LORIOL and Pellat, p. 107, pl. 10, fig. 6.

Pecten vialidus sp. nov; Linustrom, p. 15, pl. 3. figs. 5, 6.
1867 Pecten lens J. Sowerby; Laube, p. 12.
v: 1867 Pecten aratus sp. nov; WAAGEN, p. 630, pl. 31, fig. 3.
? 1869 Pecten lens J. Sowfrby; Terquem and Jourdy; p. 128.

1871 Pecten Nitescens sp. nov; Phillips, p. 330, pl. 15, fig. 2.
? 1872 Pecter Midas D'Orbigny; DE Loriol et al., p. 389, pl. 22, figs. 12, 13.
? 1874 Pecten subvitreus sp. nov; Gemmellaro and D1 Blasi, p. 122, pl. 3, figs. 11, 12.
? 1875 Pecten midas d'Orbigni: de Loriol and Pellat, p. 193.

1875 Pecten Etalloni sp. nov; De LORIOL in DE LORIOI and Pellat, p. 197, pl. 22, figs. 8, 9.
1879 Pecten lens J. Sowerby; Branco, p. 110.
non 1880 Pecten midas D'Orbigny; Damon, pl. 17, fig. 4.
$v^{*} 1880$ Pecten Clypeatus sp. nov; Witchell, p. 131, pl. 5, figs. 1a, 1 b .
1882 Pecten gracilis sp. nov; AlTH, p. 294, pl. 21, figs. 15, 16.
? 1883 Pecten lens J. Sowerby; Lahusen, p. 23, pl. 2, figs. 1, 2.
v* 1883 Pecten triformis sp. nov; W户HIDBORNE, p. 502, pl. 16, fig. 3.
1886 b Pecten Neumayri sp. nov; De Gregorio, p. 15, pl. 2, figs. 5, 6 .
1886c Pecten anughus sp. nov; De Gregorio, p. 10 . pl.4, figs. 12a-c.
? 1888 Pectenlens J. Solwerby; Schlippe, p. 128.
1890 Pecten lens J. Sowerbi; Tausch, p. 13, pl. 7. fig. 9.
1893 Pecten Nais sp. nov; DE LORIO1, p. 310, pl. 33, figs. 3, 4.
1893 Pecten Letteroni sp. nov; DE LORIOL in DF LORIOL and Lambert, p. $140, \mathrm{pl} .10$, fig. 8.
non 1894 Pecten Buchi ROemer; De Loriol, p. 53, pl. 6, fig. 7.
? 1896 Pecten cf. lens J. Sowerby; Semenow, p. 64
? 1898 Pecten lens J. Sowerby; Greppin, p. 129.
? 1900 Chlamyslens (J. Sowerby); Cossmann, p. 170.
? 1905 Pecten (Camptonectes) arcuatus J. Sow ERBY; Kilian and Guèbhard, p. 758.
? 1905 Pecten (Camptonectes) lens J. Sowerby; Kilian and Guébhard, p. 758.
? 1907 Pecten lens J. Sowerby; Deninger, p. 454.
1910 Camptonectes lens (J. Sowerbi); Lissajous, p. 363, pl. 10, fig. 6.

1915 Pecten lens J. Sowerby; Krenkel, p. 296.
$v^{* *} 1916$ Camptonectes alensis sp. nov; Paris and Richardson, p. 523, pl. 14, figs. 3a, 3b.
1917 Pecten lens J. Sowerby; Borissiak and IVanoff, p. 19, pl. 1, figs. 3, 6, 7, 9, 11.
p 1923 Camptonectes lens (J. Sowfrby); Lissajous, p. 165.
? 1924 Camptonectes cf. bellistriatus (MEEK); MCLEARN, p. 47, pl. 5 , figs. 4, 5.
? 1924 Camptonectes sp; MCLEARN, p. 47, pl. 5, fig. 6.
1925 Pecten lens J. Sowerby; Read et al., p. 80.
1925 Pecten (Camptonectes) lens J. Sowerby; Dubar, p. 285.
? 1926 Camptonectes lens (J. SOWERBY); ROMAN, p. 175.
v : 1926 Camptonectes psilonoti sp. nov; STAESCHE, p. 74, pl. 3, fig. 2 .
pv 1926 Camptonectes lens (J. Sowerby); Staesche, p. 76, pl. 2, fig. 8 .
v non 1926 Camptonectes lens var. annulatus (J. DE C. SowERBY); STAESCHE, p. 79, pl. 3, fig. 12.
v* 1926 Camptonectes giganteus sp. nov; Arkell, p. 544, pl. 33, fig. 1.
v 1930a Camptonectes lens (J. SOWERBY); Arkell, p. 94, pl. 7, fig. 1, (1931a) pl. 9, figs. 4-7.
v : 1930a Camptonectes sandsfootersis sp. nov; Arkell, p. 101, pl. 8, fig. 3.
pvnon 1931a Chlamys (Aequipecten) midas (D'OrbigNy); Arkell, p. 115, pl. 11, figs. 17-21.
? 1931 Pecten (Camptonectes) cf. lens J. Sowerby; SOKOLOV and BODYLEVSKY, p. 55, pl. 4, fig. 7.
1931 Pecten (Aequipecten) valudus Lindstrom; SOKOLOV and Bodylevsky, pp. 58, 59, pl. 3, figs. 1, 2.
p 1934 Pccten (Camptonectes) lens J. Sow'Frby; Stoll, p. 22.
non 1934 Pecten (Camptonectes) lens var. annulatus J. DE C. SOWERBY; STOLI, p. 22.

1935 Pecten (Camptonectes) aff. lens J. Sowerby: Spath, p. 56.
v 1936 Camptonectes lens (J. SOwerby); Dechaseaux, p. 30, pi. 4, figs. 11, 14 (non figs. 9, 9a).
non 1936 Camptonectes lens var. exaratus (Terquem and Jourdy); Dechaseaux, p. 30.
1936 Camptonectes Mairei sp. nov; DECHASEAUX, p. 37, pl. 5, figs. 8-10.
? 1936 Camptonectes aalensis Paris and Richardson; W'ANDEL, p. 480.
1936 Camptonectes mormi (DE LORIOL); SPATH, p. 105, pl. 41, ligs. 5, 6.
1936 Camptonectes suprajurensis (BuVIGNIFR); SPATH, p. 106, pl. 41, figs. 2-4, pl. 42, fig. 9, pl. 43, fig. 4 (?BuVIGNIER sp.).
1939 Camptonectes lens (J. Sowerby); Stefanini, p. 173 , pl. 99 , fig. 12.
non 1941 Pecten (Camptonectes) lens J. Sowerby; Leanza, p. 173, pl. 10, figs. 1, 2.
? 1951 Chlamys interpunctata sp. nov; Troedsson, p. 214, pl. 20, fig. 18.

1952 Camptonectes auritus (SCHLOTHEIM); COX, p. 23, pl. 2, fig. 6.
1952 Camptonectes lens (J. Sowerbi); Makowski, p. 17.
? 1953 Camptonectes grandis (HECTOR); MARWICK, p. 100 , pl. 4, figs. 6. 7.

1953 Camptonectes giganteus Arkell; DONOVAN, p. 70 , pl. 15, fig. 1.
? 1957 Camptonectes bellistriatus (MeEk): Frebold, p. 21

1961 Camptonectes of. auntus (SCHLOTHEIM); HAYAMI, p. 319.
v 1963 Camptonectes sp; KirkAidi, p. 129.
? 1964 Camptonectes stygius (WHITE); ImLAY; p. 25 , pl. 2, figs. 1-10.
1965 Camptonectes aurtus (SCHLOTHEIM); COX, p. 54.
? 1966 Camptonectes lens (J. Sowerby); Behmel and GEYER, p. 28.
? 1974 Camptonectes bellistriatus (Meek); R. Wright, pp. 428, 430.
1974 Camptanectes greenhoughi sp. nov; SKWARKO, p. 80, pl. 26 , figs. $11,13-17$.

1975 Camptonectes sandsfootensis ArkELL; SYKES, p. 217.

1975 Camptonectes giganteus Arkell; SYkes, p. 218.
1977 Camptonectes (Camptonectes) morini (DE LOR1OL); Kelly, p. 77, pl. 5, figs. 1-5, 7-9.
v 1978 Camptonectes (Camptonectes) auritus (SCHLOTHEIM); DUFF, p. 66, pl. 5, figs. 22, 25, text. fig. 22 .

Neotype of Chamites auritus Schlothem 1813, p. 103 designated by Duff, 1978, p. 66; BM L80525; figured Duff, 1978, pl. 5, fig. 25; Pl. 3, Fig. 25 herein; Shell-cumPebble Bed (Oxfordian), Headington, Oxford.

Text fig. 99: Camptonectes (C.) auritus - height/umbonal angle.

1. ORIGINAL DIAGNOSHS AND DESCRIPTION

None given; reference to Listre (1678, pl. 9. fig. I5).

2. DIAGNOStS

Distinguished from C. (C.) lammatus by the generally finer ornament, from C. (C.) subulutus by the presence of ornament on all parts of the dise and from C. (C.) virdunersis by the more orbicular disc.

3. DESCRIPTION

Disc sub-ovate, higher than long early in ontogeny, growing allometrically to become sub-orbicular and finally subovate, longer than high (text fig. 98), near the maximum height of 150 mm (OUM J2361). Umbonal angle very variable (text fig. 99), increasing at a Jecreasing rate during ontogeny. Dorsal margins concave, disc flanks low.

Inequilateral, anterior greater than posterior half length; mequivalve, low convexity, lelt valve more convex than right.

Intersinal distance variable, greater in left valve than right, apparently increasing with respect to length at a slower rate in U. Jurassic cf. M. Jurassic representatives (text figs. 100, 101). Byssal noth depth variable, moderate to large (text fig. 102), increasing isometrically.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. Anterior auricle of right valve meeting hinge line and dise at about 90°. Other auricles meeting hinge line at an obtuse angle and disc at an acute angle. All auricles ornamented with fine comarginal striae. Posterior auricle of right valve also bearing divaricate striae.

Height of anterior auricle and length of anterior hinge variable, increasing with respect to length at a decreasing rate in all populations (text figs. 103, 104). Length of posterior hinge variable, increasing with respect to length at a slower rate in U. cf. M. Jurassic representatives (text fig. 105).

Disc exterior ornamented with a variable number of fine divaricate striat (e.g. Pl. 3, Figs. 32, 33) increasing in number by intercalation and rendered 'punctate' by the intersection of growth lines.

Shell thickness low to moderate.

Text fig. 100: Camptonectes (C.) auritus - intersinal distance on left valve/length.

4. DISCUSSION

The systematics of the essentially finely-ornamented and orbicular species of C. (Camptonectes) described above has been the subject of much, often heated, debate. Failure to appreciate the range of static, ontogenetic and ecophenotypic variation in both ornamentation and metric proportions, allied to the typological approach of early authors has led to the designation of a plethora of specific names. The indiscriminate lumping of many of these names by early revisionists who failed to examine type material has led to a secondary source of confusion (see Arkell, 1930a for a review). However, later revisionists have also been lamentably at fault in their failure to unite stratigraphically separated but morphologically indistinguishable forms. The result is almost unparalleled nomenclatural chaos.

Minor differences in metric proportions of early and later populations (see Section 3) of individuals whose ornament is within the range defined by Pl. 3, Figs. 32, 33, can be explained as the result of phyletic neoteny (see section 10), since
there is no evidence for the existence of separate lineages. Similarly the availability of an explanation in terms of stunting (see Sections 8,10) does not favour the recognition of certain localised populations, typified by a low H/UA ratio, as separate species. 'Ecophenotypic' rather than 'genetic' variation can also be held to account for the existence of specimens with relatively strong comarginal ornament (Pl. 3, Fig. 31) and specimens with the median sector of the shell unornamented (P1. 3, Fig. 38). The former is probably the result of some environmental disturbance (as might be caused by tides, storms or attempted predation) interrupting the normal pattern of growth (Clark, 1974) while the latter is almost certainly the result of abrasion since it is confined to those parts of the shell which have been exposed to the environment for the longest period. Moreover in paired valves it is invariably the right valve (which was almost certainly in contact with the substrate and therefore subject to the most abrasion) which exhibits reduced ornamentation.

The framework of variation erected above is the basis for the following taxonomic discussion.

Text fig. 101: Camptonectes (C.) duritus - intersinal distance on right valve/length.

Type specimens which are inseparable from the species described in Section 3 by metric criteria are:-

1. The syntypes of 'Pecten'lens J. Solverby (BM LSO525, +3326; Pl. 3 Fig. 25).
2. A syntype of 'P.' arcuata J. Sowitrby (BM L80528; Pl. 3, Fig. 30).
3. The sole observed type of ' P.' comatus Munster (BSPHG AS VIl 634; Pl. 3, Fig. 27).
t. The sole observed syntype of 'P.' aratus Wagen (BSPHG AS XXII 32; Pl. 3, Fig. 34).
4. The sole observed type of 'P.' Letteroni de Luriol (MNS B03988; Pl. 3, Fig. 28).
5. The sole observed syntype of Camptonectes aalensis Paris and Richardson (BM L41942; Pl. 3, Fig. 40).
6. The holotype (M) of C. Psilonoti Staesche (GPIT).
7. A syntype of C. giganteus Arkell (OUM J2359).

Figures of type and original specimens indistinguishable by metric criteria from the species described in Section 3 are those of: -
9. Pectinites Puot
10. 'P.' Decheni Roever.
11. 'P.' Lusitanicus Sharpe.
12. 'P.'. Midas w'Orbigny (Bulle, 1932).
13. 'P.' Parandieri Étallon.
14. 'P.' morini DF Loriol.
15. 'P.' Etalloni de Loriol.
16. 'P.' gracilis Alth.
17. 'P.' Nais de Loriol.
18. C. sandsfootensis Arkell (paratypes: OUM J2360, J2361).
19. C. Mairei Dechaseauy.
20. C. suprajurensis (Buvignier); Spath (see p. 131 for a discussion of Buyignier's species).

Of the above species, numbers $4,6,7,8,9,13,16$ and 18 refer to specimens which are unornamented in the median sector of the shell while 19 refers to a specimen with strong comarginal ornament, both of which characteristics are considcred to be features of 'ecophenotypic' variation (see above).

Text fig. 103: Camptonectes (C.) auritus - height of anterior auricle/length.

Text fig. 104: Camptonectes (C.) autitus - anterior hinge length/length.

The remaining measured species exhibit the typical ornament of the species described in Section 3. Arkful (1926) considered that large size ($\mathrm{H}: \simeq \dagger 25$) was sufficient ground for erecting C. giganteus (8) but the presence of intermediate sized specimens (text fig. 98) belies this reasoning. The abnormally high H/UA ratio considered bv Arhfll (1930a) to be distinctive of C. sandsfootensis is merely the result of incorrect measurement. The original figure yields a value ($\mathrm{H}: 123, \mathrm{UA}$: $\simeq 145$) well within the range of text fig. 99 projected to larger sizes.

The original figure of 'P.' Delessei Étallon (2i) is inseparable from the species described in Section 3 by L/AH, L/PH, $\mathrm{L} / \mathrm{I}_{\mathrm{L}}$ and L/HAA but the anomalously high H/L and H/UA suggest that it may be equivalent to C. (C.) suprajurensis. 'P.' subvitreus Gfumellaro and $\mathrm{DI}_{1} \mathrm{BI}_{\mathrm{A}}$ asi (22) has an anomalously low H/UA but this could well be due to imprecise measurement by the authors of the species. H/L and L/AH of the original figure is inseparable from the species described in Section 3. The figure of ' P.' Buchi Roever apprently depicts a left valve which has been reversed through the process of printing from a copper engraving. Further inaccuracies in reproduction may account for the seemingly high H UA and L/AH (23) of a specimen whose ornament and other metric proportions are indistinguishable from the species described in Section 3.

Species for which types and figures are either unavailable or of insufficient quality for measurement are considered below.
C. cf. bellistriatus (Mefr); McLearn and C. sp; Mclfarn from N. America have ornament which is within the range defined by Il. 3, Figs. 32, 33. However, a specimen referred to the former species (BM L58934) from the Oxfordian of W yoming has an exceptionally low $\mathrm{H} / \mathrm{UA}(24)$ thus it may be that finely ornamented N . American C . (Camptonectes) are specifically distinct. C. grandis (Hector); Marwich from N . Zealand is indistinguishable on the basis of ornament but is reported to have only a small byssal notch. Although the size of the latter is variable in the species described in Section 3 it seems unwise at present to synonymise the species.
'P.' triformis Whidborne (holotype BM L73166; Pl. 3, Fig. 35), 'P.' nitescens Phillips and C. stygius (White); ImLAY are characterised by a lack of ornament in the median shell sector, which may be considered an aspect of 'ecophenotypic' variation (see above). C. stygius is however derived from N. America and therefore cannot be certainly synonymised with the species described in Section 3 (see above).

BOLLE (19t0) considered the single type of 'P.' Satumus d'Orbigny in the MNO to be specifically indeterminate and created a neotype from the specimen figured in Chapuls and Dfwalque (1853). The general form and ornamentation of the latter is indistingusihable from the species deseribed in Section 3 as are the original figures of ' P.' Maltonensis Young and Bird, 'P.' Neumayri De Gregorio, 'P.' anughus de Gre. GORIO and C.grecnhoughi Skwarko, the syntypes of

Text fig. 105: Camptonectes (C.) auritus - posterior hinge length/length.
'P.' Clypeatus Witchlil (BM L17536; Pl. 3, Fig. 37), and the originals of C. sp. Kirkaldy (OUM J17551-3).
'P.' valdutus Lindstrom from the Kimmeridgian is apparently a worn example of the species described in Section 3. The general shape and large size ($\mathrm{H}: 125$) allow only that it might be a representative of C. (Camptochlamys) obscurus. Sokolov and Bodylevsky (1931) have applied Lindstrom's specific name to forms which undoubtedly belong to the former species. Chlamys interpunctuta Troedsson is reported to possess 'Camptonectes-ornament' but since it is derived from the L. Lias it may be a well preserved representative of C. (C.) subulatus. Behmel and Gtyer’s (1966) unillustrated record of ' P.' lens from the Lias seems to refer to a genuine example of the species described in Section 3. Unillustrated Bathonian records of J. Sowerby's species (1) (Quenstedt, 1843; Terquem and Jourdy, 1869; Schlippf, 1888; Semenoni", 1896; Greppin, 1898; Cossmany, 1900; Kilian and Gutbhard, 1905; Devinger, 1907; Lisfajous, 1923; Roman, 1926) must be treated with great caution because of the possibility of confusion for the much more common Bathonian species C. (C.) lammatus. Prior to Arkfll's (1930a) description and illustration of J. and J. DE C. Sowerby's types 'P.' lens was interpreted very broadly. Thus Staesche (1926) not only included forms referable to C. (C.) luminatus within his hypodigm for C. lens (not the figured specimen) but also regarded forms which the present author places in C. (Camptochlamys) obscurus as being separable from C. lens only at the varietal level (see p. 137 for a discussion of this and other 'varieties' of ' P.' lens). Morris and Lycett (1853) also misinterpreted J. Sowerby's hypodigms in assigning coarsely ornamented Bathonian specimens ($=C$. (C.) laminatus) to 'P.' lens and 'P.' arcuatus (2) while Quenstedt (1858, pl. 59, fig. 3) included a specimen with radial striae ($=$ C. (Cc.) obscurres) within his hypodigm for 'P.' lens.

Even following Arkell's revision, J. Sowerby's hypodigms have been misinterpreted. Thus Lfanza (1942) refers to 'P.' (C.) lens a specimen from the Lias of Argentina which
has radial rather than divaricate striae and an abnormally high H/UA (25). A Bathonian specimen (pl. 4, figs. 9, 9a) referred to C. lens by Dechasfaux (1936) has the coarse ornament of C. (C.) laminatus although another (pl. 4, fig. 11) appears to be a genuine example of C. lens. Specimens from the Bathonian referred to 'P.' (Camptonectes) lens by Stoll(1934) very probably belong in C. (C.) laminatus.

Other secondary references to synonymous species which are based on specimens which may be outside the range of the species described in Section 3 include ' P.' lens J. Sonwerby; Lahusen and 'P.' (C.) cf. lens J. Sowfrby; Sokolon and Bodylevsky (both based on specimens with strong comarginal ornament which may helong in C. (Cc.) obscurus), 'P.' (C.) archatus J. Sowerbi; Kilian and Guebhard (based on unfigured Bathonian specimens probably referable to C. (C.) laminatus) and C. aalensis Paris and Richarusov; Wandfl (based on a specimen (26) with abnormally high H/UA). The specimens referred to d'Orbigny's species P. Midas (12) by Dollfus (1863), Damov (1880) and Arkell (1931a) are clearly representatives of late populations of Radulopecten fibrosus. With the evident possibility of confusion inadequately characterised references to d'Orbigny's species in de Loriol et al. (1872) and de Loriol and Pellat (1875) cannot confidently be synonymised with the species described in Section 3. The specimen ligured as ' P.' Buchi Roever by de Loriol (1894) has an abnormally high H/UA (27) and is referable to C. (C.) virdunensis.
Schlotheiv's (1813) 'Chamites' auritus, which was founded on the figure of Pectinites in Listir (1678), itself a copy of the figure (discussed above) in PLot (1676), provides the earliest available specific name for the species described in Section 3. Duff (1978: 66) has designated an appropriate neotype. In the interests of brevity secondary references to synonymous species are excluded from the synonymy except where they differ from the original hypodigm or are of relevance to Sections 5-10. Further citations may be traced either directly or through synonymy lists in v. Zieten (1833),

Text fig. 106: Camptonectes (C.) turtus - European distribution.

Text fig. 107: Camptonectes (C.) auratus - World distribution (Callovian reconstruction).

Rof ber (1836), v. Buerh (1839), Bronv (1852), Quivstedt (1852), Oppel (1858), Contflian (1859), W'aagen (1867), dF Loriol and Pfllat (1875), Whitrbornf (1883), Fifbelkorv (1893), Parona (1895), Cossviavv (1914), Paris and Richard) un (1916), Lfwinshi (1923), Stafschit (1926), Arkfll (1930a), Dfchasfaux (1936) and Duif (1978).

5. STRATIGRAPHIC RANGE

The earliest record of C. (C.) auritus is a single specimen from the Planorbis zone (Hettangian) of S. Germany (Stafschf, 1926). Specimens from the L. Lias of Sweden (Trofosson, 1951) and the M. and U. Lias of Spain (Behmel and GFyir, 1966) may be conspecific and specimens from undifferentiated Lias in the Alps (Tausch, 1890) are almost certainly conspecific (see Section 4). A number of examples, reaching a maximum height of 33 mm , are preserved on a block from the Posidonienschiefer (L. Toarcian) of S. Ger-
many (BSPHG) but only one specimen from Northants (BM LS9415; Pl. 3, Fig. 36) is recorded in the U. Toarcian.

The species becomes locally very common in the Aalenian and Bajocian but is exceedingly rare in the Bathonian. The following Bathonian specimens in the $B M$ are probably referable to C. (C.) auritus: L24155, L24156, L74364, L76505 and L97129. Probable Bathonian records from France (De chaseaux, 1936) and Greenland (Donovan, 1953) together with a number of dubious records are discussed in Section 4 .

In suitable facies C. (C.) auritus is found in all stages to the Tithonian and Kelly (1977) records the species from the Ryazanian stage in the Cretaceous of E. England.

6. GEOGRAPHIC RANGE

C. (C.) untutus is much more common in the northern parts of the European region (text fig. 106) but this is probably a re-
flection of the northerly distribution of the appropriate facies (see Section 8) rather than an indication of a temperature dependance. Outside Europe (text fig. 107) the species has a palaeolatitudinal range of about 150° (maximum of 100° [Kimmeridgian] in any one stage). After the L. Jurassic C. (C.) auritus appears to have attained an almost worldwide distribution although there are doubts about records from N. America and the E. Indies (see Section 4) and no known occurrences in S. America. The fact that C. (C.) auritus is only known from one locality (E. Greenland; Dovovan. 1953) in the Bathonian outside Europe makes it implausible to attribute the extreme rarity of the species at that time within Europe (see Section 5) to a migration elsewhere.

7. DESCRIPTION OF ECOLOGY

C. (C.) aurrtus occurs in a wide variety of facies in the Aalenian of Europe. It is particularly common in the Northampton Sand Ironstone (Opalinum zone), a chamosite oolite containing a diverse fauna (see p. 26). It is also common in oolitic and pisolitic limestones of the Murchisonae zone in the Cotswolds where it reaches a maximum height of 52 mm (OUM J1913).

In the Bajocian of Yorkshire the species occurs abundantly at certain impure limestone horizons in the Scarborough Formation. The fauna is restricted (dominated by Gervillella together with Cucullaea, Astarte, Cloughtonia and Pseudomelania) and C. (C.) aurrtus is characteristically small (maximum height 43 mm ; Y'M 531a) and has a low H/UA ratio. In the Millepore Bed, a sideritic sandstone with a more diverse fauna (the above together with Trigonia, Pholadomya, bryozoa, crinoids and regular echinoids), C. (C.) auritus is less common but reaches a maximum height of 72.5 mm (YM 531 la). Similarly large sizes are reached by the species in the fully marine Bajocian deposits of S. Germany.

The species is extremely rare in the Bathonian (see Section 5), when C. (C.) laminatus is common, and is also rare in the argillaceous facies widely developed in the Callovian. However, in more littoral shallow water facies such as the limestones and sandstones of Yorkshire (U. Cornbrash, Kellaways Rock, Hackness Rock), Scotland (Brora Roof Bed), Poland and the Baltic Region C. (C.) auritus is locally common and reaches a maximum height of 61 mm (MNO 3399).

In the Oxfordian the species is found in a variety of shallow water, level bottom environments but appears to show a preference for oolites (e. g. Malton Oolite, Yorkshire). Contrary to Arkell's opinion (1930a) the species is seldom abundant as is demonstrated by the fact that it contributes to none of the trophic nuclei of the benthic faunal associations studied by Fursich (1977). Oxfordian C. (C.) atritus is always found with a high diversity fauna and the maximum height attained is 150 mm (OUM J2361).

The species is not common in the L. Kimmeridge Clay (Kimmeridgian) but in the more marginal sandy facies developed in the upper part of the formation (M. Tithonian) in England (Hartwell Clay) and N. W. France (Assises de Croi) it is locally abundant. Maximum size (H:34, BM L35267) is, however, small and the H/UA ratio is generally low. Inoperna is a particularly common faunal associate.

In the U. Tithonian C. (C.) auritus accurs in algal limestones (Townson, 1971) in Portland and the Boulonnais where it reaches a maximum height of 26 mm (BM L52436). The species is rare in more open marine deposits where C. (Camptochlamys) obscurus is common.

A few specimens are recorded from the Purbeck beds neas Oxford (Kirkaldy, 1963).

The above description concentrates on the common and unusual occurrences of C. (C.) auritus. Specimens may in fact be found at almost all horizons in the M. \& U. Jurassic of Europe. Notable exceptions, additional to those discussed above and in Section 5, are the Oxfordian-Tithonian coral reef facies of central and southern Europe, where almost all specimens of C. (Camptonectes) are referable to C. (C.) virdunensis (see p. 131), and the deep water pelagic limestone facies of the M . and U . Jurassic in the peri-Mediterranean region where there is only one doubtful record (Gemmellaro and DI BLAS1, 187t; see Section 4), and that from a probable submarine high.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that C. (C.) auritus was a remarkably eurytopic species. Although the soft or soupy substrates characteristic of clay or limemud deposition were not apparently suitable, almost all other substrates, including shifting oolite shoals, were colonised. The species was also able to tolerate environments of high physical stress. Thus it is found in Tithonian algal limestones which were probably deposited in very shallow sub-tidal or inter-tidal situations (Sellwood, 1978) where exposure and wave disturbance must have been frequent. Hallam (1976) has also suggested that Camptonectes was able to tolerate salinities within the upper brachyhaline regime ($24-30^{\circ} \%$) and the occurrence of C. (C.) auritus in the Purbeck formation, a sequence of marine, lagoonal and freshwater beds (Avdersoy and Bazlfy, 1971), supports this general thesis (but see p. 113). While the records of C. (C.) auritus are probably from the most fully marine horizons, the lack of any other pectinids suggests that salinity was liable to at least short-term fluctuations. Although ammonites do occur in the Scarborough Formation the reduced faunal diversity of the beds containing C. (C.) auritus is generally suggestive of low environmental stability, with perhaps a higher incidence of storms being of controlling importance rather than salinity variations. Jorisav (1971) has reinterpreted the Kimmeridgian/Tithonian sequence of L. Saxony in terms of increasing rather than decreasing salinity so the lack of C. (C.) auritus suggests that euryhalinity did not extend to a tolerance of hypersaline conditions. However, somewhat rare occurrences of the species in bituminous shales in the L. Toarcian (see Section 5) and M. Callovian (Dupf, 1978) suggest that C. (C.) auritus had some ability to withstand reduced oxygen tension and there is good evidence of an ability to tolerate various temperatures (see Section 6).

Although a eurytopic species, the size, shape and numbers of C. (C.) auritus seem to have been considerably influenced by the environment. Open marine situations characterised by a high diversity fauna supported small populations of large individuals with a high H/UA ratio. Marginal marine environments with a lower diversity fauna supported larger
populations of relatively small individiduals with a low H/UA ratio. At first sight the correlation of size and numbers with distance from shoreline suggests that the species could adopt a range of adaptive strategies within the ' K - r ' spectrum to allow colonisation of both biologically accommodated and physically controlled biofacies. However, the pattern of shape variation is not in accordance with this interpretation. Since umbonal angle increases during ontogeny one may conclude that individuals with a low H/UA ratio (from marginal marine situations) have grown more slowly, in complete contradiction to the normal policy of 'r' strategists. This might be explained by a strong correlation between shape and developmental stage, in which case precocious maturation and short life span could be invoked for marginal marine populations. This hypothesis could be tested by an analysis of growth lines. In the present absence of data for the latter and with support for the hyporhesis from the evolution of C. (C.) auritus (see Section 10), the author prefers to adopt the view that marginal marine populations are stunted as a result of high environmental stress. It is suggested that the anomalously large number of individuals may be the consequence of a reduced incidence of predation, as has been demonstrated in Recent shallowwater communities by Jackson (1974).
A close Recent morphological analogue of C. (C.) auriturs is Cyclopecten vitrea (GMFliN), a bathyal species (K vLDSEV, 1970). The frequent association of C. (C.) auritus with endobyssate mytiloid and pterioid bivalves suggests that Chlamys varria (Linvafus), which is found attached to the Horse Mussel Modiolus modiolus (A. Brand, pers. comm., 1976), may be a closer Recent ecological analogue than Cy. vitrea.

The paucity of C. (C.) auritus in open marine environments in the Tithonian may be explained by competition with C. (Camptochlamys) obscurus, which is common in such environments. The species are not known to coexist in numbers at earlier horizons. The rarity of C. (C.) auritus in reef facies in the U . Jurassic and in all facies in the Bathonian may also be explained by competition (with respectively C. (C.) virdunersis and C. (C.) laminatus). However, the cause of the rarity of C. (C.) auritus in the L. Jurassic is more easily attributed to the widespread development of unfavourable argillaceous facies than to competition with the common species C. (C.) subulatus.

9. FUNCTIONAL MORPHOLOGY

The existence of a moderate to large byssal notch indicates that C. (C.) auritus was byssally attached, at least early in ontogeny. Adult individuals, especially of later populations, probably gained stability mainly by virtue of their relatively heavy shells.

The thin shell, low convexity, subdued ornamentation and ontogenetic increase in umbonal angle of C. (C.) aturitus indicate that swimming was a possibility. Phyletic reduction in the rate of H/UA increase, facilitating escape from predators by swimming at larger body sizes, is probably causally related to a parallel increase in maximum height.

Seilacher (1972) has suggested that the apparent difficulty of programming the growth of divaricate ornament must imply great functional significance where it is present. In this respect one might argue that 'Camptonectes-ornament' pro-
vides reinforcement for a thin and therefore weak shell. However, Seilacher also argues that variability should be low in functional structures thus the great variation in the ornament of C. (C.) durritus presents a paradox. This could be resolved by invoking individual adaptation and an analysis of the development of ornament along the lines adopted for Radulopecton vagans (see Johvson, 1981) might be used to explore this possibility.

10. ORIGINS AND EVOLUTION

Since C. (C.) aurtus is found in the Planorbis zone its origins may lie outside the Jurassic. True 'Camptonectes-ornament' is however unknown in the Triassic, the striking ornament exhibited by Filopecten filosus (v. Haurr) being the nearest approach to it (see Allasivaz, 1972, pl. 40, figs. 1-7. pl. 41, figs. 1-3).
tnsufficient data is available to assess the extent of phyletic evolution within L. Jurassic C. (C.) auritus. However, in M. \& U. Jurassic representatives evolution is apparent in several characters although the variability of the species does not make for accurate documentation.

Oxfordian populations exhibit a slower rate of increase in $\mathrm{PH}, \mathrm{t}_{\mathrm{I}}$ and t_{R} with respect to length than their Bajocian ancestors. In the latter at least PH/L and $\mathbf{f}_{\mathrm{L}} / \mathrm{L}$ increase during ontogeny thus Oxfordian populations may have evolved by the retardation of shape development relative to size. In the absence of absolute age data it is impossible to say whether later representatives have actually developed more slowly or simply grown faster. In each of the preceding cases the paucity of data from intermediate stages precludes an evaluation of the tempo of evolution. However, data for maximum height is available from a number of levels and seems to indicate an oscillatory pattern in an overall increase from Aalenian to Ox fordian (Aalenian, 52 mm ; Bajocian, 72.5 mm ; Callovian, 61 mm ; Oxfordian, 150 mm). In fact the low Callovian value may well be an artefact of the limited number of museum specimens available for measurement from the stage thus maximum height could exhibit a smooth increase. The marked reversal to the trend in the Tithonian $\left(\mathrm{H}_{\text {max }}: 34\right)$ could also be due to limited data but is more probably the result of stunting (through restriction of the species to high stress environments, see Section 8).

Phyletic increase in size and retardation of somatic development are indicative of ' k ' selection (Gould, 1977). This provides further evidence for the view that individuals of small size with low H/UA from marginal marine situations are the products of stunting rather than facultative progenesis (see Section 8). Progenesis appears to be correlated with ' r ' selection yet even late, ' k ' selected, populations of C. (C.) auritus may exhibit small size and a low H/UA.

Camptonectes (Camptonectes) laminatus (J. Sowerby 1818)
Pl. 4, Figs. 10, 12-16, ?Fig. 1 1; text figs. 108-117

Synonymy

y" 1818 Pecten laminata sp. nov; J. Sowerby, p. 4, pl. 205, fig. 4.
v* 1818 Pecten similis sp. nov; J. Sowerby, p. 5, pl. 205, fig. 6.

1818 Pecten rigida sp. nov; J. Sowerby, p. 5, pl. 205, fig. 8.
1850 Pecten Langrunensis sp. nov; D'Orbigny, v. 1, p. 314 (BoUle, 1912, p. 93).

1853 Pecten Woodwiardii sp. nov; MORRIS and LYcetT, p. 8, pl. 1, fig. 20.

1853 Pecten arcuatus J. Sowfrby; Morris and Lycett, p. 11, pl. 1, fig. 18 (non J. Sowerby sp.).

1853 Pctenlens J. Sowerby; Morris and Lycett, p. 11, pl. 2, figs. 1, la (non J. Sowerby sp.).
1863 Pecten rigidus J. Sowerby; Lycett, p. 31, pl. 40, fig. 16.
$\mathrm{v}^{*} 1869$ Pecter anguliferus sp. nov; Terquem and Jourdy, p. 128 , pl. 13, fig. 16.

1871 Pecten divaricatus sp. nov; Phillips, p. 240 , pl. 11, fig. 29.
1883 Pecten puellaris sp. nov; WHidbORNE, p. 501, pl. 19, figs. 3, 3a.
1905 Pecten (Camptonectes) rigidus J. Sowerby; KilIAN and Guebhard, p. 758.
1905 Pecten (Camptonectes) rigidus J. Sowerby; KilIAN and GUÉBhard, p. 758.
pv 1926 Camptonectes lens (J.SOWERBY); STAESCHE, p. 76, pl. 2, fig. 8 (non J. Sowerby sp.).
1932 Camptonectes rigidus (J. Sowerby); Spath, p. 113, pl. 5, fig. 4 , pl. 10, fig. 5.
? 1933 Pecten (Chlamys) curvivarians sp. nov; DiETRICH, p. 63, pl. 81, figs. 122, 123.
v 1936 Camptonectes lens (J. SOWERBY); DECHASEAUX, p. 30, pl. 4, figs. 9, 9a (non figs. 11, 14, non J. Sowerby sp.).
p 1948 Camptonectes laminatus (J. SOWERBY); COX and Arkell, p. 13.
1948 Camptonectes rigidus (J. SOWERBY); COX and Arkele, p. 13.
? 1950 Camptonectes laminatus (J. Sowerby); CHANNON, p. 248.
non 1952 Chlaniys curvivarians (DIETRICH); COX, p. 8, pl. 2, figs. 5, 8.
1953 Camptonectes cf. laminata (J. Sowerby); MarWICk, p. 100 , pl. 10, fig. 11.
1959 Camptonectes inexpectatus sp. nov; HAYAMI, p. 70, pl. 7, figs. +5.
? 1961 Camptonectes rigidus (J. SOWERBY); ROSSI RONChetti and Fantini Sestini, p. 122, pl. 13, figs. $1,2$.
1961 Camptonectes sp; Rossi Ronchetti and Fantini SESTINI, p. 123, pl. 13, fig. 4.
1964 Camptonectes laminatus (J. Sowerby); J.C. Fischer, p. 18.
1964 Camptonectes rigidus (J. SOWERBY); J.-C. FisCHER, p. 19.

1964 Camptonectes plattessiformis (WHITE); 1MLAY, p. 26, pl. 2, figs. 11-14.

1967 Camptonectes platessiformis (WHITE); 1MLAY, p. 79, pl. 2, figs. 1, 2.
p 1978 Camptonectes laminatus (J. Sowerby); Brad. SHAW, p. 313.

Holotype (M) of Pecten laminata J. Sowerby 1818 , p. 4, pl. 205, fig 4; BM 43327; Pl. 4 , Fig. I 4 herein; Forest Marble (see Arkell, 1930a: 96) or L. Cornbrash (both Bathonian), Chatley Lodge, Somerser.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Spec Char. Suborbicular, depressed, striated; striae arched, diverging: ears triangular, unequal; the largest plaited.

Text fig. 108: Camptonectes (C.) lammatus - height/length.

The striae are slightly undulated; to the naked eye they appears smooth, but when carefully examined with a lens, minute lines may be traced across them. The plaits upon the ear form a strong character, whence the name.

In shelly limestone (Cornbrash) at Chatley Lodge, in Somersetshire.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of C. (Camptonectes) by the coarseness of the divaricate ornament on the disc and the strength of the comarginal lamellae on the anterior auricle of the left valve.

3. AMENDED DESCRIPTION

Essentially similar to C. (C.) auritus except for the diagnostic features (see Section 2), smaller maximum height ($59.5 \mathrm{~mm}, \mathrm{I}$ MLAy, 1964), apparent allometric decrease in N / L (text fig. 112) and somewhat thicker shell. The remaining metric proportions are plotted in text figs. 108-111, 113-115, while the range of ornamental variation is depicted in Pl. 4 , Figs. 10, 12-16.

4. DISCUSSION

The holotypes (M) of:

1. 'Pecten' laminata J. Sowerby (BM43327; Pl. 4, Fig. 14) and
2. 'P.' similis J. Sowerby (BM +3329; Pl. 4, Fig. 12) and the sole observed type of:
3. 'P.' anguliferus Terquem and Jourdy (ENSM L334; Pl. 4, Fig. J6)
are indistinguishable from the species described in Section 3 on the basis of metric proportions and ornament. The original figure of Camptonectes sp; Rossi Ronchetti and Fantini Ses. tini (4) is similarly inseparable.

Text fig. 109: Camptonectes (C.) laminatus - height/umbonal angle.

Since the number of divaricate striae increases during the ontogeny of the species described in Section 3, species erected for small specimens with relatively few striae (' P.' rigida J . Sowrby, 'P.' Langrunensis d'Okbigny, 'P.' Woodwardui Morris and Lyeftt, 'P.' diviaricatus Phillips, 'P.' puellaris Whidborve) cannot be accorded a distinction.

Although not from the typical horizon of derivation (Bathonian) there seems no reason to separate C. platessiformus White; Inlay (from the Bajocian of the U. S. Western Interior) and C. imexpectutus Hayam (from the L. Lias of Japan) from the species described in Section 3. Both have the coarse divaricate striae and auricular lamellae characteristic of the latter species and the comarginal ornament of the disc seems too weak to allow any possibility that C. platessiformis and C. inexpectatus might be representative of C. (Camptochlamys) obscuyus.

The original figure of 'P.' (Chlamys) curvivarians Diftrich depicts a specimen which resembles the species described in Section 3 in its divaricate ornament and all metric proportions apart from H/UA (5). However, Cox (1952) refers specimens with very much stronger ornament to Dietrich's species and since the stratigraphic range of the latter (Bajocian-Tithonian) extends to considerably younger horizons than that of the

Text fig. 110: Camptonectes (C.) laminatus - intersinal distance on left valve/length.

Text fig. 111: Camptonectes (C.) lammatus - intersinal distance on right valve/length.
species described in Section 3 it is probable that they are distinct.

Of the synonymous species discussed above the earliest available name for the species described in Section 3 is 'P.' laminata J. Sowerby. Both Cox and Arkell (1948) and Channon (1950) refer unfigured Aalenian and Bajocian specimens from the Cotswolds to C. laminatus. Since J. Sowerby's species is extremely rare in the latter stages in England it is likely that they in fact belong to the much more common species C. (C.) auritus. Conversely Bathonian records of junior synonyms of C. (C.) auritus (listed under the latter species) in Quenstedt (1843), Terquem and Jourdy (1869), Schlippe (1888), Semenow (1896), Greppin (1898), Cossmann (1900), Kilian and Guébhard (1905), Deninger (1907), Lissajous (1923) and Roman (1926) may well reFer to

Text fig. 112: Camptonectes (C.) laminatus - depth of byssal notch/length.

Text fig. 113: Camptonectes (C.) lammatus - height of anterior auricle/length.
C. (C.) laminatus and some of the Bathonian specimens referred to junior synonyms of C. (C.) duritus (see p. 121) in Morris and Lycitt (1853), Staesche (1926) and Dechaseaux (1936) undoubtedly belong to C. (C.) laminatus.

The original ligure of C. rigidus (J. Sowfrby); Rossi Ronchetti and Fantini Sestini depicts a specimen with radial rather than divaricate striae which is thus probably referable to C. (Camptochlamys) clathratus rather than C. (C.) laminatus. Bradshaw's (1978) inclusion of specimens with strong comarginal ornament within C. laminatus indicates that his hypodigm probably extended to forms which the present author places in C. (Camptochlamys) obscurus.

5. STRATIGRAPHIC RANGE

The earliest record of C. (C.) laminatus is from the L. Lias of Japan (Hayami, 1959). Thenceforth, apart from dubious records from the Aalenian of the Cotswolds (see Section +),

Text fig. 114: Camptonectes (C.) laminatus - posterior hinge length/length.

Text fig. 115: Camptonectes (C.) lammatus - anterior hinge length/length.
the species is unknown until the Bajocian when it is recorded from the U. S. Western Interior (1mlay, 1964, 1967). Only two specimens from the Bajocian of England (BM L47437, L+1956) can be definitely referred to C. (C.) laminatus. The species becomes common in the Bathonian but thereafter is extremely rare. Records from New Zealand (Marwick, 1953) and Afghanistan (Rossi Ronchetti and Fantini Sestini, 1961) may include Callovian examples while two coarsely ornamented specimens from the Oxfordian of England (BM L20487: LL8339, Pl. 4, Fig. 11) may be referable to C. (C.) laminatus.

6. GEOGRAPHIC RANGE

In Europe (text fig. 116) C. (C.) laminatus is largely restricted to France and England. Elsewhere (text fig. 117) the species is only known in numbers in the U. S. Western In-
terior. Since occurrences there (Bajocian) predate common occurrences in Europe (Bathonian) and postdate records of the species in Japan (L. Lias), it may be that C. (C.) laminatus undertook an eastward migration, perhaps making use of the marine connection between western America and Europe which was established in Bajocian times (Hallam, 1975a). Viewed in these terms records of the species from the Bathonian-Callovian of New Zealand can be taken to represent a relict population.

7. DESCRIPTION OF ECOLOGY

In the Bajocian of the U. S. Western Interior C. (C.) laminatus is the only pectinid present in limestones and shales containing a rather restricted fauna, dominated by 'Ostrea' and Vaugonia. The maximum height attained is 59.5 mm (I 1 LAY, 1964).

In the Bathonian of S. England C. (C.) laminatus is recorded from the Minchinhampton Beds (L. Bathonian), shelly oolites containing a diverse fauna, in which the species reaches a maximum height of 58 mm (BM 20744). In the approximately contemporaneous Fuller's Earth Clay on the Dorset coast, fragments of C. (C.) laminatus are common in an otherwise almost monotypic bed of Praeexogyra bebridica. In the U. Bathonian C. (C.) laminatus occurs commonly in the Forest Marble, a grain supported, partly oolitic limestone with a dominantly epibenthic fauna of oysters, Modiolus and Epithyris. The species is also found in the L. Cornbrash, a non-oolitic, shell-fragment limestone with abundant infaunal bivalves (Ceratomya, Pleuromya) and echinoids (Holectypus, Nucleolites) in addition to epifaunal bivalves (Entolium (E.) corneolum, Meleagrinella) and brachiopods (Obovathyris).

In the Bathonian of central England occasional specimens of C. (C.) laminatus are found in paralic clay/limestone sequences in association with a low diversity fauna dominated by Pracexogyrahebridica but also containing Placunopsis, Modiolus, Myopholas, Cuspidaria, and Kallirbynchia (Torrens, 1968). J. D. Hudson (pers. comm., 1977) has recorded a single specimen from similar facies in the Inner Hebrides.

Text fig. 116: Camptonectes (C.) laminatus - European distribution.

Text fig. 117: Camptonectes (C.) laminatus - World distribution (Callovian reconstruction).

Outside Britain the species appears to be less common but occurs at most levels in the Bathonian. It is not found in the deep ,water pelagic limestones of the peri-Mediterranean region, the only records from the latter area being from shallow water oolitic deposits (e. g. Kilian and Guebhard, I905).

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that apart from showing a general preference for shallow water environments, C. (C.) laminatus was a eurytopic species. Environments supporting a diverse fauna were preferred but in such situations both high energy oobiosparites (e. g. Minchinhampton Beds, Forest Marble) and lower energy biomicrites (e. g. L. Cornbrash) were colonised. The occurrence of C. (C.) laminatus in low diversity faunas such as in the Bajocian of the U. S. Western Interior (lacking in Gryphaea, pholadomyoids and other pectinids) and the Bathonian of the E. Midlands (lacking in cephalopods, ectoprocts and corals) indicates a tolerance of high environmental stress. In the former case the presence nearby of gypsiferous deposits (Gypsum Springs Formation) indicates that high stress was the result of hypersaline conditions (Hallam, 1975a). However, in the Jatter case the absence of evaporites suggests that high stress probably resulted from low or fluctuating salinities. The euryhaline oyster Praeexogyra hebridica (see J. Hudson and Palmer, 1976) is a frequent associate in the Bathonian of the E. Midlands but M. J. Bradshaw reports (pers. comm., 1977) that C. (C.) laminatus is only found, and then rarely, in the beds with the greatest marine influence. The impression thus gained, that C. (C.) laminatus was only able to withstand slightly abnormal salinities, is bolstered by the extreme rarity of the species in the Hebrides, where the Bathonian is of generally less marine aspect, and the more frequent occurrence in the Praeexogyra bebridica Bed in Dorset where the presence of adherent Foraminifera (and of ammonites in the surrounding clays) suggests nearly normal salinities (J. Hudson and Palmer, 1976).

The frequent association with oysters suggests that C. (C.) laminatus may have used this group for byssal attachment.

9. FUNCTIONAL MORPHOLOGY

Since C. (C.) laminatus is in most morphological respects identical to C. (C.) auritus a similar byssate mode of life can be inferred. The maximum height (59.5 mm) is small enough to suggest that the species was byssate throughout ontogeny. However, the apparent allometric decrease in N/L may indicate that the largest individuals were free living. The more prominent ornament of C. (C.) laminatus may have resulted in a stronger shell than C. (C.) auritus but this does not appear to correlate with any autecological differences, both species being common in high energy environments.

10. ORIGINS AND EVOLUTION

C. (C.) laminatus almost certainly evolved from C. (C.) auritus. The stratigraphically and geographically isolated first occurrence of C. (C.) laminatus (L. Lias, Japan), a subsequent migration (see Section 6), and the sudden appearance of the species in Europe are classic indications of allopatric speciation.

Since the number of divaricate striae increases during the ontogeny of C. (C.) auritus the relatively widely spaced ornament of C. (C.) laminatus may be a product of heterochronic retardation of the rate of ornamental development. The appearance of auricular lamellae cannot, however, be simply explained by heterochrony and suggests that speciation involved at least some change in the structural genome.

There is no evidence for any phyletic evolution within C. (C.) laminatus.

The decline and subsequent extinction of C. (C.) laminatus is correlated with the reappearance in Europe of large numbers of C. (C.) auritus. It may be that after a phase of competitive exclusion in the Bathonian C. (C.) auritus had
evolved sufficiently (see p. 124) to outcompete C. (C.) laminatus in the Callovian and Oxfordian.

Camptonectes (Camptonectes) virdunensis (Buvignier 1852) Pl. +, Figs. 1, 2; text figs. 118-120

Synonymy

? 1852 Pecten Zieteneus sp. nov; Buvignier, p. 24, pl. 19, figs. 24, 25.
1852 Pecten virdunensis sp. nov; Buvignier, p. 24, pl. 20, figs. 4-6.
? 1852 Pecten suprajurensis sp. nov; Buvignier, p. 24, pl. 19, figs. 21-23.
(?) 1859 Pecten suprajurensis (BUVIGNIER); CONTEJEAN, p. 218.
? 1859 Pecten Flamandi sp. nov; Contejean, p. 312, pl. 24, figs. 1, 2.
? 1862 Pecten Delessei sp. nov; Etallon in Thurmann and Étallon, p. 263, pl. 37, fig. 9.
1862 Pecten Sableri sp. nov; Étallon in Thurmann and Étallon, p. 264, pl. 37, fig. 10.
(?) 1862 Pecten flamandi Contejean; Thurmann and Étallon, p. 264, pl. 37, fig. 1.
? 1862 Pecten Waldeckensis sp. nov; Étallon in ThurManN and Etallon, p. 265, pl. 37, fig. 3.
non 1866 Pecten suprafurensis Buvignier; De Loriol and Pellat, p. 105, pl. 10, fig. 5.
(?) 1868 Pecten suprajurensts BuVIGNIER; DE LORIOL and Cotteau, p. 644.
1872 Pecten suprajisrensis BUVIGNIER; DE LORIOL et al., p. 379, pl. 22, fig. 3 .

1874 Pecten titonitis sp. nov; Gemmellaro and Di BLasi, p. 120, pl. 3, figs. 13-15.
(?) 1875 Pecten suprajurensis BUVIGNIER; DE LORIOL and Pellat, p. 188.
? 1875 Pecten Flamandi CONTEjean; de Loriol and Pellat, p. 194, pl. 22, figs. 6, 7.
1875 Pecten virdunensis Buvignier; De Loriol and Pellat, p. 199, pl. 22, fig. 16.
1881a Pecten aff. tithonius Gemmellaro and Di Blasi, BOenm, p, 183, pl. 40, fig. 5.
1882 Pecten (Camptonectes) virdumensis BUVIGNIER; ROfDer, p. 55.
v 1883 Pecten tuthomius Gemmellaro and Di Blasi; BOEHM, p. 605, pl. 67, figs. 21-23.
1894 Pecten Buchi Roemer; De Loriol, p. 53, pl. 6, fig. 7 (non Roempr sp.).
1903 Pecten tithonius Gemmellaro and Di Blast; Remes, p. 201.
1904 Pecten (Camptonectes) ledonicus sp. nov; DE LOR10L, p. 227, pl. 24, fig. 2.
v 1905 Pecten virdunensis Buvignier; Peron, p. 223.
vp 1905 Pectenzieteneus Buvignier; Pfron, p. 224.
v 1905 Pecten supraurensıs Buvignier; Peron, p. 229.
? 1914 Chlamys virdunensis (BUVIGNIER); COSSMANN, p.2, pl. 5, fig. 1.
? 1920 Pecten tithonzes Gemmellaro and Di Blasi; Faure-Marguerit, p. 56.
1925 Pecten virdunensis Buvignier; Roman, p. 194.
1926 Pecten tithonizes Gemmeliaro and Di Blasi; Staesche, p. 82, pl. 5.
1930a Camptonectes virdunensis (BUVIGNIER); Arkell, p. 99, pl. 7, figs. 5, 5a.
(?) 1935 Chlamys supraturensis (BUVIGNIER); SALIN, p. 140.
1936 Camptonectes ledonicus (DE LORIOL); DECHASEAUX, p. 34, pl. 5, fig. 3.
non 1936 Camptonectes Zietenus (Buvignier); DechasEAUX, p. 34, pl. 5, figs. 5, 6.
(?) 1936
(?) 1936
non 1936

1939
v 1975
MEILARO and DI BLASI); YAMAN1, p. 55.

The type material of Pecten Virdunensis Buulgnier 1852, p. 24, pl. 20, figs. 4-6 may be in NM. The material was derived from the U. Oxfordian of Verdun (Meuse).

Text fig. 118: Camptonectes (C.) virdunensis - height/length.

1. ORIGINAL DIAGNOSIS AND DESCR1PTION

'P. testa ovali - elongata, depressa, inaequivalvi, inferne rotundata, superne acuta; concentrice et radiatim striata; striis radiantibus arcuatis, punctulatis, striis concentricis interruptis; valva sinistra convexiori; cardine recto; auriculus posticis, brevibus, obliquis; anticis majoribus.
Longuer 29 mill., hauteur 40, épaisseur 10.
Coquille ovale allongée aplatie, inequivalve, arrondie inférieurement, et (en faisant abstraction des oreillettes) se terminant en pointe vers les crochets, stries rayonnantes arquées, laissant entr'elles des côtes legèrement convexes et se croisant avec des stries concentriques, interrompues sur les côtes, et tres-marquées dans le fond des stries rayonnantes; valve gauche un peu plus bombée que l'autre; charnière droite; oreillettes postérieures courtes et obliques; les antérieures plus allongées: crochets aigus.

Des assises moyennes du coral-rag de Verdun. r."

Text fig. 119: Camptonectes (C.) virdurensis - height/umbonal angle.

2. AMENDED DIAGNOSIS

Distinguished from all other species of C. (Camptonectes) by the consistently sub-ovate disc ($\mathrm{H}>\mathrm{L}$).

3. AMENDED DESCRIPTION

Essentially similar to C. (C.) auritus apart from the diagnostic feature (see Section 2), higher mean H/UA (text fig. 119), apparently isometric growth of H / L (text fig. 118) to the maximum height of 67.5 mm (Gemmellaro and DI Blasi, 1874), somewhat weaker ornamentation and thinner shell. The sub-ovate form is illustrated in Pl. 4, Figs. 1, 2.

4. DISCUSSION

Buvignifr's (1852) drawings of ' P.' Zietenetis and 'P.' Virdunensis are both based on specimens derived from U. Oxfordian reef facies. However, only that of ' P.' Virdunensis (1) definitely depicts the narrow C. (Camptonectes) species which is common in this facies (see Section 8) and described in Section 3. The dimensions of the figure of P. Zietencus (2) plot within the range of the species described in Section 3 but the figure is an enlargement and Dechaseaux (1936), who probably had access to the original, has referred to Camptonectes Zietenus specimens whose dimensions (3) are comparable with C. (C.) duritus, of which they would thus seem to be rare representatives from reef facies (see p. 123). Although Peron (1905) has applied the name ' P.' zieteneus to specimens which are at least in part referable to the species described in Section 3, it seems preferable to adopt the name C. (C.) virdunensis for the latter until such time as the type material of ' P.' Zieteneus (which would have priority as name bearer) is relocated and shown unequivocally to be representative of the species described in Section 3. The figure of ' P.' suprajurensis Buviginer (4) has metric proportions within the range of C. (C.) virdunensis but like that of 'P.' Zieteneus is an enlargement. De Loriol and Pellat (1866) and Peron (1905), who may have had access to the original, have applied the specific name to specimens whose metric proportions (5 and 6 respectively) are comparable with C. (C.) auritus. However, de Loriol et al. (1872) figure a specimen which seems to be representative of C. (C.) virdinensis under 'P.' suprajurensis. With the evident possibility of confusion the systematic affinities of the type material of ' P.' suprajurensis and of inadequately characterised specimens referred to the species in Contejean (1859), de Loriol and Cotteau (1868), de Loriol and Pellat (1875), Salin (1935) and Dechaseaux (1936) are best left an open question. Specimens referred to C. suprajurensis by Spath (1936) can however definitely be placed in C. (C.) auritus (see p. 118).
'P.' Sableri Étallon, 'P.' titonius Gemmellaro and Di Blasi and 'P.' ledonicus DE Loriol are inseparable from C. (C.) virdunensis by their metric proportions (respectively 7,8

Text fig. 120: Camptonectes (C.) virdunensis - European distribution.
and 9) and ornament. 'P.' Waldeckenses Étallon is also inseparable by metric proportions (10) and the apparent lack of ornament can probably be attributed to abrasion. The original figure of 'P.' Flamandi Contejean has H/L (11) very similar to that of C. (C.) virdunensis but H/UA is abnormally small. While this might be due to inaccurate drawing the existence of quite strong comarginal ornament in addition to divaricate striae suggests that Contejean's species may be referable to C. (Camptochlamys) obscurus. Specimens figured under 'P.' Flamandi by de Loriol and Pellat (1875) may have similar affinities but those referred to Contejfan's species by Thurmann and Étallon (1862) and Dechaseaux (1936) almost certainly belong in C. (C.) virdunensis.
'Cblamys' virdunensis (Buvignier); Cossmann was compared with 'P.' clatbratus Rofmer while Faure-Marguerit's (1920) record of Gemmellaro and Dı Blasi's species was based on specimens said to have 'quadrilateral' ornament. This suggests possible misapplication of these specific names to examples of C. (Camptochlamys).
The affinities of 'P.' Buchi dF Loriol (non Roemer) and 'P.' Delessei Étallon are discussed under C. (C.) auritus.

5. STRATIGRAPHIC RANGE

C. (C.) virdunensis is first recorded in the L. Oxfordian of Alsace (Roeder, 1882). Thenceforth it is found locally until the U. Tithonian when it is recorded from Stramberg in Czechoslovakia (Bof hy, 1883; Remes, 1903).

6. GEOGRAPHIC RANGE

Common occurrences of C. (C.) virdthensis are restricted to the central and southern parts of Europe (text fig. 120) where the appropriate reefal facies (see Section S) is widespread. The only known occurrence of the species outside Europe is a single specimen from the Oxfordian/Kimmeridgian of Somalia (Stefanini, 1939).

7. DESCRIPTION OF ECOLOGY

C. (C.) virdunensis is found commonly in the U . Oxfordian coral reef facies if the Yonne (Peron, 1905), where it reaches a maximum height of 49 mm (MNS). The diverse associated fauna is described on p. 88. Contemporaneous occurrences of the species in the Meuse (Buvignifr, 1852) and Jura (DE LORIOL, 1894, 1904) are from similar facies.

In the Kimmeridgian C. (C.) virdunensis is found in coral reef facies at Kelheim (BоFни, 1881a) and reef derived facies in the E. Paris Basin where the species reaches a maximum height of 60 mm (NM).

In the L. Tithonian C. (C.) virdunenses is recorded from the Nattheim and Neuburg coral reets in S. Germany (Staesche, 1926; Y'amani, 1975). In similar facies in Sicily (Gemmellaro and DI Biasi, 1874) the species is reported to be common and to attain a maximum height of 67.5 mm .

In the U. Tithonian coral reef at Stramberg C. (C.) virdunensis is recorded commonly by Военм (1883).

Of the other unequivocal records of C. (C.) virdunensis listed in synonymy only those in af Loriol and Pellat (1875), de Loriol et al. (1872) and Arkfll (1930a) can be
said to refer to specimens which are definitely not derived from reef facies. In the first two cases (from the Kimmeridgian of the Boulonnais and the 'Portlandian' of the E. Paris Basin respectively) the number of specimens is indeterminate and in the last case (\mathbf{U}. Oxfordian, Dorset) only one specimen is recorded.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that C. (C.) virdunensis was a highly stenotopic species, restricted to coral reef facies. As such its palaeosynecology is comparable with that of the similarly restricted species of S. (Spondylopecten). Like the latter its absence from Kimmeridgian reefs at La Rochelle may relate to their dense structure (see p. 88). Failure to colonise the apparently suitable Oxfordian reefs of England may have stemmed from an intolerance of the lower temperatures of more northerly latitudes.

Recent low convexity, weakly ornamented, thin shelled morphological analogues of C. (C.) virdunensis include Cblamys marshallensis, Ch. madreporarum and Ch. irregularis, all of which live byssally attached either beneath or within coral colonies (Waller, 1972b).

9. FUNCTIONAL MORPHOLOGY

Since C. (C.) virdunensis is in most morphological respects identical to C. (C.) auritus a similar byssate mode of life can be inferred. The maximum height of C. (C.) virdunensis $(67.5 \mathrm{~mm})$ is considerably greater than that of the morphological analogue Ch. marshallensis (30 mm) and this probably implies that the former did not live suspended from a byssus when adult. Large specimens probably gained additional support from contact between the disc and corals. Such support might have been obtained in crevices and the low convexity, minimally ornamented shell would have been well adapted to this microhabitat. The protection against waves and predatory attacks afforded by crevice microhabitats might be the reason behind the possession of only a thin, weak shell.

The high H/L ratio of the shell renders it probable that C. (C.) virdunensis could only have been a poor swimmer.

10. ORIGINS AND EVOLUTION

C. (C.) virdunensis almost certainly arose from C. (C.) auritus, from which it differs significantly only by the greater H/L and H/UA. Since the former ratio decreases while the latter increases during the ontogeny of C. (C.) auritus transspecific evolution could have been brought about by heterochrony. However, simultaneous retardation (of H/L) and acceleration (of H/UA) would have had to have taken place and it is by no means certain whether such a situation could have occurred in a single speciation event (although Gould (1977) points out that more distantly related taxa may exhibit in the descendant, Eeatures which may be attributed to both acceleration and retardation of the ancestral ontogeny).

The limited number of measured specimens (30) precludes an exact evaluation of phyletic trends within C. (C.) virdunensis. However, maximum height does seem to show a
genuine increase in the passage from Oxfordian (49 mm) to Kimmeridgian (60 mm) to Tithonian (67.5 mm). This, together with extreme stenotopy, is good evidence for the prevalence of ' K ' selection (Gould, 1977).

Subgenus CAMPTOCHLAMYS Arkell 1930a
Type species. OD; Arkell 1930a, p. 102; Pecten intertextus Roemer 1839, p. 27, pl. 18, fig. 23; Oxfordian, N. Germany.

AMENDED DIAGNOSIS

Differing from C. (Camptonectes) in that weak radial riblets and comarginal lamellae are present giving rise to a reticulate pattern of sculpture. Jur. (Aaten.-Tithon.), ?Cret., Eur., Asia, Afr., N. Am., ?Austr.

DISCUSSION

In his diagnosis Hertlein (1969: N352) stated that Camptochlamys ranged only from the Bajocian to the 'Portlandian' (Tithonian) and was restricted to England. The stratigraphic and geographic range can now be extended to that given above. If the Cretaceous forms (see p. 136) are indeed referable to C. (Camptochlamys) then the subgenus Boreionectes Zakharov 1965 should be regarded as a junior subjective synonym.

Arkfll (1930a) originally created Camptochlamys as a subgenus of Chlamys. However, Cox (1952) suggested that it be transferred to Camptonectes because divaricate striae were seen on a specimen (BM L26669) of the type species Pecter intertextus Roemer ($=$ C. (Cc.) clathratus (Roemer)). The author has been unable to trace the relevant specimen and has yet to find any further examples exhibiting divaricate ornament.

Text fig. 121: Camptonectes (Camptochlamys) obscurus - height/length.

The possibility of removal by abrasion cannot, however, be discounted.

Two groups may be distinguished in Jurassic C. (Camptochlamys) on the following basis:

1. Radial striae reaching the ventral margin at all stages in ontogeny ($=C .(C$.$) clatbratus).$
2. Radial striae restricted to within a few cm . of the umbo (= C. (Cc.) obscturus).

Camptonectes (Camptochlamys) obscurus (J. Sowerby 1818) Pl. 4, Figs. 17-22, 24, 25; text figs. 121-130

Synonymy

v* 1818 Pecten obscura sp. nov; J. Sowerby, p. 3, pl. 205, fig. 1.
v* 1819 Pecten lamellosus sp. nov; J. Sowerby, p. 67, pl. 239.
$\mathrm{v}^{\text {* }}$ 1826a Pecten annulatus sp. nov; J. DE C. Sowerby, p. 80 , pl. 542, fig. 1.
1833 Pecten obscurus J. Sowerby; Goldeuss, p. 48, pl. 91, fig. 1.
1833 Pecten amnulatus J. De C. Sowerby; Goldfuss, p. 49, pl. 91, fig. 2.

1836 Pecten sublaezis sp. nov; Roemer, p. 70, pl. 3, fig. 16.
1837 Pecten concmmus sp. nov; KOCH and Dunkfr, P. 42, pl. 5, figs. 4a, 4b.
? 1837 Pecten concentricus sp. nov; KOCH and DuNkER, p. 43, pl. 5, fig. 8.

1850 Pecten Germanize sp. nov: d'Orbigny, v. I, p. 314.

1850 Pecten Obrinus sp. nov: d'Orbignt, v. 1, p. 373 (Boul F, 1927. v. 16, p. 131, 1928, v. 17, pl. 6, figs. 5, 6).
1852 Pecten circinalis sp. nov; Buvignier, p. 24, pl. 19. figs. 13-15.
1853 Pecten annulatus J. dF C. Sowfrby; Morris and Lycett, p. 12, pl. 1, fig. 13.
1853 Pecten Germaniae d'Orbigny; Chapuis and Dewalque, p. 214, pl. 29, fig.2.
v 1858 Pecten lens J. Sowerby; Quenstedt, p. 432, pl. 59, fig. 3 (non pl. 59, fig. 4, non p. 322, pl. 44, fig. 12, p. 354, pl. 46, fig. 20, pl. 48, fig. 8; non J. Sowerby sp.).
? 1859 Pecten Grenieri sp. nov; Contejean, p. 311, pl. 23, figs. 7-9.
? 1859 Pecten Flamandi sp. nov; CONTEjean, p. 312, pl. 24, figs. 1, 2.
1860 Pecten lamellosus J. Sowerby; CoQuand, p. 91.
1861 Pecten anmulatus J. de C. Sowerby; Trautschold, p. 446 .
non 1862 Pecten flamandi Contejean; Thurmann and Étallon, p. 264, pl. 37, fig. 1.
? 1862 Pecten Greneieri Contejean; Thurmann and Étallon, p. 265, pl. 37, fig. 7.
1864 Pecten sublaezus Roemer; v. Sefbach, p. 100.
(?) 1864 Pecten concentricus Koch and Dunker; v. SeeВАСн, p. 100.
1866 Pecten lamellosus J. Sowerby; de Loriol and Pellat, p. 103, pl. 10, fig. 4.
1869 Pecten exaratus sp. nov; Terquem and Jourdy, p. 128, pl. 13, fig. 17.
non 1872 Pecten Greniert Contejean; de Loriol et al., p. 382, pl. 22, figs. 5, 6.
? 1875 Pecten Flanandi CONTEJEAN; DF Loriol and Pellat, p. 194, pl. 22, figs. 6, 7.
v? 1883 Pecten aff. Grenieri Contejean; Boehm, p. 603, pl. 67, figs. 17, 18.
? 1883 Pecten lens J. Sowerby; Lahusen, p. 23, pl. 2, fig. 1.
1888 Pecten subannulatus sp. nov; SChlippe, p. 128, pl. 2, fig. 3.
(?) 1891 Pecten concentricus KOCH and DUNEER; BEHRFNDSEN, p. 416.
non 1893 Pecten (Camptonectes) of. Grenieri Contejean; Fiebelkorn, p. 399, pl. 14, fig. 11.
? 1894 Pecten chavattensis sp. nov; DE LORIOL, p. 55, pl. 6, fig. 8.
1910 Pecten (Camptonectes) Broenlundr sp. nov; RavN, p. 465 , pl. 34 , figs. $5,6$.

1917 Pecten annulatus J. De C. Sowerby; Borissiak and 1VANOFF, p. 25, pl. 1, fig. 14.
1925 Pecten of. annulatus J. DE C. SOW'ERBY; SteFanINI, p. 161, pl. 29, fig. 1.
v 1926 Camptonectes lens var. annulatus (J. DE C. SOWerby); Staesche, p. 79, pl. 3, fig. 12.
1926 Camptonectes Sowerbyi sp. nov; STAESCHE, p. 81, pl. 3, fig. 7.
? 1931 Pecten (Camptonectes) cf. lens J. Sowerby; SOKOLOV and BODYLEVSKY, p. 55, pl. 4, fig. 7.
1934 Pecten (Camptonectes) lens var. annulatus J. DE C. Sowerby; Stole, p. 22.
1935a Camptonectes brown sp. nov; Cox, p. 177, pl. 18, figs. 13a, 13b.
1935 Camptonectes lamellosus (J. Sowerby); Salin, p. 140 .
? 1936 Camptonectes praecinctus sp. nov; Spath, p. 104, pl. 40, fig. 6, pl. 41 , fig. 1.
1936 Campronectes lens var. exaratus (Terquem and JOURDy): Dechaseaux, p. 30.
1936 Camptonectes anmhutus (J. DE C. SOWFRBY); Dechaseaux, p. 31, pl. 4, fig. 10.
v : 1936 Camptonectes Richei sp. nov; Dechaseaux, p. 32, pl. 4, figs. 12-15, pl. 5, figs. 1, 2.
1936 Camptonectes Sowerbyi Staesche; Dechaseaux, p. 33.
non 1936 Camptonectes Flamandi (CONTEJEAN); DECHASEAUX, p. 35.
1936 Camptonectes arcinalis (Buvignier); DechasEAUX, p. 36.
1936 Camptonectes lamellosus (J. Sowerby); DeChasEaUX, p. 36, pl. 5, fig. 11.
v non 1936 Aequpecten Greneri (CONTEJEAN); DechasEAUX, p. 52, pl. 8, fig. 7.
1939 Camptonectes Germaniae (D'Orbigny); StefanINI, p. 171, pl. 19, fig. 11.
1948 Camptonectes annulatus (J. DE C. SOWERBY); Cox and Arkell, p. 13.
1948 Camptonectes (Camptochlamys) obscurus (J. SowFrby); Cox and Arkell, p. 14.
v* 1952 Camptonectes indicus sp. nov; COX, p. 25, pl. 3, figs. 1-t.
? 1961 Camptonectes aff. brown COX; HAYAMI, p. 67.
1961 Camptonectes annulatus (J. DE C. SOWERBY); Rossi Ronchetti and Fantini Sestini, p. 121, pl. 13, fig. 10.
? 1974 Camptonectes waggrakinensis sp. nov; SKWARKO, p. 82, pl. 25, figs. 1, 4.
p 1978 Camptonectes laminatus (J. Sowerby); BradSHAW, p. 313 (non J. Sowerby sp.).
1978 Camptonectes (Camptochlamys) obscurus (J. SowERBY); BRADSHAN', p. 314.
1979 Camptonectes annulatus (J. DE C. Sowerby): T. Palmer, p. 196.

Holotype (M) of Pecten obscura J. Sowerby 1818 , p. 3, pl. 205, fig. 1; BM 43325 ; Pl. 4, Fig. 24 herein; H: 45, L: 38, HAA: 8.5, $\mathrm{AH}: 15, \mathrm{~N}: 5.5, \mathrm{UA}: 93$; Stonesfield Slate (L. Bathonian), Stonesfield, Oxfordshire.

Text fig. 122: Camptonectes (Camptochlamys) obscurus - height/umbonal angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Spec. Char. Sub-orbicular, depressed, with obscure arched longitudinal rugae upon the surface; ears large.

Somewhat longer than wide: the surface is dull, almost smooth; but it has some indications of diverging furrows. The edge is thick.

Occurs upon the sandy Limestone slate of Stonesfield, near Oxford. My specimen was forwarded to me long since by Dr. Williams.'

2. AMENDED DIAGNOSIS

Distinguished from C. (Camptochlamys) clathratus by the fact that the radial striae extend no more than a few centimetres from the umbo and are thereafter replaced by divaricate striae.

3. AMENDED DESCRIPTION

Essentially similar to C. (Camptonectes) auritus. Differing by the presence of comarginal lamellae and radial striae (Pl .4 , Fig. 22) of variable length, greater maximum height (122 mm , OUM J37483; ? 206 mm , see Section 7), higher mean H/UA (text fig. 122), greater convexity of the left valve, isometric increase in anterior hinge length and right valve intersinal distance to give higher values of AH / L (text fig. 127) and $\mathrm{I}_{\mathrm{R}} / \mathrm{L}$ (text fig. 124) late in ontogeny, isometric increase of anterior auricle height to give lower values of HAA/L (text fig. 126) late in ontogeny and allometric increase of posterior hinge length to give higher values of PH/L (text fig. 128) late in ontogeny. The remaining metric characters are plotted in text figs. 121, 123, 125.
Unlike C. (C.) auritus there appear to be no phyletic changes in metric proportions beyond an increase in size and a possible accentuation of allometric decrease in H / L in Tithonian as compared to Bathonian individuals.

Text fig. 123: Camptonectes (Camptochlamys) obscurus - intersinal distance on left valve/length.

t. DISCUSSION

A disjunct stratigraphic distribution with two distinct peaks in abundance (see Sections 5, 7) has resulted in the evolution of two taxonomic schemes (centred on species erected by the Sowerbys for Bathonian and Tithonian examples) for M. and U. Jurassic representatives of the species described in Section 3. There is, however, no biological basis for maintaining a distinction and in the absence of any evidence for the existence of separate lineages such differences as exist between earlier and later populations (see Section 3) can be most parsimoniously explained in terms of phyletic evolution (see Section 10). Large L. Cretaccous forms (usually referred to Camptonectes cinctus J. Sowerby) are probably also phyletic descendants but their systematics are excluded from this
discussion because the present author has yet to survey the literature and has examined relatively few specimens. Suffice it to say that metric proportions (c) would plot within the range of Jurassic ontogenies if these were projected to larger sizes.

The following types and figures of types from the Jurassic are inseparable from the species described in Section 3 on the basis of metric proportions:

1. The holotype (M) of 'Pecten' obscura J. Sowfrby (BM 43325; P1. 4, Fig. 24).
2. Two syntypes of 'P.' lamellosus J. Sowerby (BM 43299; Pl. 4, Fig. 17).
3. The holotype (M) of 'P.' annulatus J. de C. Sowerby (BM 43301; Pl. 4, Fig. 18).

Text fig. 124: Camptonectes (Camptochlamys) obscurus - intersinal distance on right valve/length.
4. The sole observed type of 'P.' exaratus Terquem and Jourdy (ENSM L335).
5. A paratype of Camptonectes indicus Cox (BM L75265; Pl. 4, Fig. 25).
6. The type series of C. Richei Dechaseaux (NM).
7. The original figure of 'P.' sublaevis Roemer.
8. The original figure of ' P.' concinnus Koch and Dunk. ER.
9. The original figure of C. Sowerbyi Stafsche.

In none of the foregoing cases does any difference in ornament provide a basis for distinction. The subdued ornamentation of 'P.' obscura, 'P.' exaratus and C. Richei is clearly the result of wear. Varietal use of ' P.' annulatus in Staeschi (1926) and Stoll (1934) and of 'P.' exaratus in Dechaseaux (1936) does not depart from the original authors' hypodigms.
'P.' sublaevis Roemer should be permanently rejected since it is a junior primary homonym of ' P.' sublaevis Young and BIRD (itself a junior subjective synonym of P seudopecten (P s.) equivalvis).

Figures of the types of 'P.' Obrinus D'Orbigny, P. circinalis Buvignier, 'P.'subannutlatus Schlippe, 'P.' Broenlundi Ravn and C. browni Cox were not measured but in each case the ornament does not differ significantly from that of the species described in Section 3. Hayamis (1961) record of a specimen resembling Cox's species must be treated sceptically in view of the disjunct geographic position (Japan) and lack of a figure. Although a figure is provided of C. waggrakinensis Skwarko (from W. Australia) the original is very poorly preserved. Nevertheless comparison with 'P.' cinctus J. Sowerby suggests that it could be synonymous with the

Text fig. 125: Camptonectes (Camptochlumys) obscurus - depth of byssal notch/length.

Text fig. 126: Camptonectes (Camptochlamys) obscurus - height of anterior auricle/length.

Text fig. 127: Camptonectes (Camptochlamys) obscurus - anterior hinge length/length.

Text fig. 128: Camptonectes (Camptochlamys) obscurus - posterior hinge length/length.
species described in Section 3 (see above). The figure of 'P.' chavattensis de Loriol depicts a specimen with reticulate ornament, as is characteristic of C. (Camptochlamys), and mention in the descriprion of 'punctae' on the right valve suggests that it may be referable to the species described in Section 3.
'P.' Germaniae d'Orbigny was erected for a specimen from the Kimmeridgian assigned to ' P.' annulatus J. DE C. Suwerby by Gondfuss (1833). Presumably d'Orbigny (1850) considered that the horizon of derivation merited a distinction from J. de C. Sowfrby's species, whose holotype is from the Bathonian. However, the present author's inclusion of both M. and U. Jurassic specimens within the same hypodigm renders this insufficient grounds for a specific separation.

The original figure of ' P.' concentricits Koch and Dunker appears to depict the comarginally ornamented right valve of Entolium (E.) orbiculare but the fact that v. Sefbach (1864) and Behrendsen (1891), both of whom may have examined the type material, have applied the specific name to specimens with radial as well as comarginal omament suggests that it may be a reversed illustration of the left valve of the species described in Section 3. Although H/L and H/UA (10) are both high for the latter species they are considerably less distant than from E. (E.) orbiculure.
Although one of the original figures (pl. 40, fig. 6) of C. praecinctus Spath (Tithonian) has metric proportions (H : 168, L: 165, UA: 128) within the range of projected ontogenies of the species described in Section 3, the other (pl. 41, fig. 1) has a rather low H/UA ($100 / 40$), which, together with the poor development of comarginal lamellae, suggests that the species may in fact be synonymous with C. (C.) ،turitus.

The affinities of Contfjean's (1859) species 'P.' Grenicri and 'P.' Flamandi and secondary references thereto are dealt with under Radulopecten strictus and C. (C.) virdunensis respectively.
The original (GPIT) of 'P.'lens J. Sowerby; Quenstedt (1858 , pl. 59 , fig. 3 only) has radial striae in the umbonal reg-
ion and is clearly referable to the species described in Section 3 rather than Sowerby's species ($=$ C. (C.) auritus). Records of J. Sowfrby's species in Lahusen (1883) and Sohelov and Bodylevsky (1931) are discussed under C. (C.) auritus. Specimens said to have strong comarginal ornament but which were referred to C. laminatus by Bradshaw (1978) are probably representative of the species described in Section 3.

Of the synonymous species discussed above the earliest available name for the species described in Section 3 is 'P.'obscura J. Sowerby.

5. STRATIGRAPHIC RANGE

The first records of C. (Cc.) obscityes are from the Aalenian (Murchisonae zone) of Swabia (Stafsche, 1926). A few specimens are recorded from the Bajocian of S. Germany (Quenstedt, 1858), E. France (Dechaseaux, 1936) and the Cotswolds (BM 73397, L5125, L17573, L41949, L84344, L95180, LL24287) but the species does not become common until the Bathonian. Callovian records from Europe are limited to Lahusen (1883) and a few specimens in DM while Oxfordian records are limited to Buvigvirr (1852). Definite records from the Kimmeridgian are restricted to Goldfuss (1833), Koch and Duvffr (i837), y. Sffbach (1864) and De. chaseaux (1936). However, the species becomes common again in the Tithonian and if specimens such as BM L1354 and L24189 are included within C. (Cc.) obscurus (see Section 4) the stratigraphic range can be said to extend into the L . Cretaceous at least as far as the Hauterivian.

6. GFOGRAPHIC RANGE

C. (Cc.) obscurus was essentially a Boreal species. Thus for most of its stratigraphic range distribution was centred in N. Europe (text fig. 129) and in the later (Tithonian-L. Cretaceous) parts of its stratigraphic range the centre of distribution shifted outside continental Europe, into Britain (see Section 7).

Text fig. 129: Camptonectes (Camptochlamys) obscurws - European distribution.

Text fig. 130: Camptonectes (Camptochlamys) obscurus - World distribution (Callovian reconstruction).

The paucity of Callovian records in Europe (see Section 5) is probably the result of the widespread development of unfavourable clay facies (see Section 8). Records from the Callovian of Somalia (Cox, 1935a) and India (Cox, 1952) and ?Callovian of Afghanistan (Rossi Ronchetti and Fantini SesTIN1, 1961) may thus signify migration to more suitable environments (text fig. 130). Similarly the rarity of the species in the Bajocian and Oxfordian of Europe may correlate with occurrences in the Bajocian of Somalia (Stefanini, 1939) and possible occurrences in the Bajocian (Skwarko, 1974) and Oxfordian (a poorly preserved, unlocalised and unnumbered specimen in the BM) of Australia. However, in these cases exclusion from Europe was more probably the result of competition with C. (C.) auritus since suitable sedimentary environments were widespread (see Section 8).

7. DESCRIPTION OF ECOLOGY

In the Aalenian of Swabia C. (Cc.) obscurus occurs in chamosite oolites in association with common examples of Propeamussium (P.) pumilum and Entolium (E.) corneolum. The maximum height attained is 74 mm (GPIT). C. (C.) att ritus is a fairly rare associate but in similar almost contemporaneous sediments in central England (Northampton Sand Ironstone) it is common while C. (Cc.) obscurus is unknown. C. (C.) auritus is also common throughout the Bajocian in Europe but C. (Cc.) obscurus is generally rare (see Section 5). However an isolated specimen (Stafsche, 1926) attains a maximum height of 93.8 mm .
In the Bathonian of Britain C. (Cc.) obscurus is particularly common in the Stonesfield Slate (L. Bathonian) where the most common faunal associates are oysters and 'Trigonia impressa' together with rhynchonellid brachiopods and cidaroid echinoids. The sediments are flat laminated calcareous sandstones and sandy oolites. The species also occurs, albeit somewhat less commonly, in grain supported shelly oolites of roughly the same age at Minchinhampton and in the U. Bathonian Forest Marble. In both cases C. (C.) laminatus is a fairly common associate and at the former locality C.
(Cc.) clathratus also occurs quite frequently. The sedimentary and faunal associations of most other Bathonian occurrences of C. (Cc.) obscurus are unclear. However in the M./U. Bathonian White Limestone Formation of the Cotswolds the species occurs in muddy lime sands, where the principal faunal associates are Praeexogyra bebridica and Isognomon isognomoides, and in shelly micrites where the brachiopod Epithyris is the dominant faunal element. C. (Cc.) obscurus is absent from lime sands and pelleted lime muds in the same formation (T. Palmer, 1979) but it may occur in sands and oyster reefs further northeast in the Rutland Formation (Bradshaw, 1978, see Section 4). The maximum height attained by the species in the Bathonian is 69 mm (BM L10962).
C. (Cc.) obscurus is rare in the Callovian of W. Europe (see Section 5), where the stage is widely developed in clay facies, but is known from a limestone sequence containing chamosite oolite beds in Russia (Lahusev, 1883). Oolitic deposits are widespread in the Oxfordian of Europe but C. (Cc.) obscurus is absent from them, the only record of the species in the Oxfordian being from marls (Buvignier, 1852). C. (C.) auritus and C. (C.) clathratus are however quite common in Oxfordian oolites as well as other sediments.
C. (Cc.) obscuruts is rare in the L. Kimmeridge Clay (Kimmeridgian) but is occasionally found in the sandy marginal facies developed in the upper part of the formation (M. Tithonian) in S. England and N. W. France. C. (C.) autritus is much more common at the latter horizon but in the U. Tithonian it is rare and C. (Cc.) obscurus is common, reaching a maximum height of 122 mm (OUM J37483). In Dorset C. (Cc.) obscurus occurs most abundantly at three levels in the U. Tithonian; within the Portland Sand Formation, in the Exogyra Beds (Corton Hill Member), and within the Portland Stone Formation, in the Basal Shell Bed (Dungy Head Member) and the Freestone Series (Winspit Member). In each case there is a diverse associated ammonite, gastropod and bivalve fauna including the genera Trigonia, Protocardia, Isognomon, Plearomya and Exogyra. Records from Tithonian marls and limestones (Calcaire de Barrois) in the E. Paris Basin (Salin, 1935) are associated with a much less diverse
fauna (lacking in ammonites and dominated by 'Corbula', 'Leptoxis', 'Lioplax' and 'Helania') and specimens from the 'Kimmeridgian/Portlandian' (Koch and DuNker, 1837) and 'L. and U. Kimmeridge' (v. Sefbach, 1864) of L. Saxony are probably derived from horizons with a similarly restricted fauna (Holder, 196+; Hucariede, 1967).
Specimens usually referred to C. cinctus J. Sowerby but which are likely to be phyletic descendants of C. (Cc.) obscurus (see Section 4) are found in the Valanginian and Hauterivian of Lincolnshire, where they reach a maximum height of 206 mm (BM L1354). The horizons of greatest abundance appear to be the Claxby Ironstone (a chamosite oolite containing a diverse fauna including the bivalves Exogyra, Trigonia and Cucullaea together with ammonites and belemnites) and the Tealby Limestone (a sequence of sandy limestones, clays and shales). A single specimen (BM L24189) is known from roughly contemporaneous deposits in N. Germany but there are no records from further south in Europe.

8. INTERPRETATION OF ECOLOGY

The oolitic limestones and ironstones most commonly occupied by C. (Cc.) obscurus are indicative of generally high energy levels and Sfliweod and Mc Kerrow (197t) have suggested that periodic storms were an important factor during the deposition of the Stonesfield Slate, in which the species is particularly common. The levels at which C. (Cc.) obscurus is most abundant in the U . Tithonian of Dorset are indicative of regression (Towvsov, 1975) and one can assume that shallowing of the sea resulted in higher environmental energy from the increased effect of waves and currents.

The rarity of C. (Cc.) obscurtus in most argillaceous sequences suggests that the species could not tolerate low energy environments. However, evidence from the White Limestone Formation, where low energy environments were apparently preferentially colonised, belies this reasoning and suggests moreover that the abundance of the species in oolitic limestones, ironstones etc. is not due to a particular liking for high energy environments. A dependence on the pre-existence of some specific element of the fauna (perhaps oysters) for the provision of byssal attachment sites for the juvenile (see Section 9) may have been the primary determinant of distribution.

The occurrence of C. (Cc.) obscurns in the Calcaire de Barrois is evidence, according to the facies interpretation of SALIN (1935), of a tolerance of reduced salinities. The occurrence of the species in the Kimmeridgian/Tithonian sequence of L. Saxony provides further evidence of a tolerance of reduced salinities if the facies interpretation of Huckriede (1967) is followed but is evidence of an additional tolerance of high salinities if the facies interpretation of Jortav (1971) is adopted. If confirmed, records from the Bathonian of the E. Midlands would be evidence of a tolerance of fluctuating as well as low salinities (see. p. 129).

There is a very noticeable inverse correlation between the numbers of C. (Cc.) obscurus and C. (C.) auritus at any one time or place which is strongly suggestive of competition.

There is however little evidence of a similar reaction between C. (Cc.) obscurus and C. (C.) laminatus and although the rarity of C. (Cc.) obscurtus in the Oxfordian is matched by a corresponding abundance of C. (Cc.) clathratus competition can hardly be invoked in explanation because the species occur together in numbers in the Bathonian. The rarity of C. (Cc.) obscurus in the Oxfordian is more probably the result of competitive exclusion by C. (C.) atritus which occurs widely in the stage.

9. FUNCTIONAL MORPHOLOGY

Since C. (Cc.) obscurus is comparable to C. (C.) auritus in most aspects of morphology, a similar juvenile byssate followed by adult reclining mode of life can be inferred. The greater shell thickness and H/UA of C. (Cc.) obscurus probably led to the loss of swimming ability at an earlier age, although some compensation may have been derived from the greater convexity of the left valve. In spite of an apparent phyletic reduction in H/L it is still very doubtful whether adult representatives of later populations could have swum.

Staesche (1926) considered the strong comarginal lamellae on the disc to be an adaptation for stability in high energy environments. However, in view of the fact that lamellae are usually more strongly developed on the left valve (not in contact with the substrate) and that the non-lamellate species C. (C.) laminatus occurs with C. (Cc.) obscurus in high energy environments, Stafsche's hypothesis is implausible. A more likely explanation is that the lamellae provided camouflage or, as Staeschf also hypothesised, that they served to strengthen and stiffen the shell against predatory attacks, to which the animal must have been susceptible in the sessile adult stage.

10. ORIG1NS AND EVOLUTION

C. (Cc.) obscurus almost certainly arose from C. (C.) auritus. Regulatory gene evolution leading to heterochrony can be invoked to explain differences in UA, HAA and AH. However, simultaneous acceleration (for the first two) and retardation (for the last) would have to have occurred (see p. 132). A more fundamental alteration of the genome is probably indicated by the appearance of such new features as comarginal lamellae and radial striae and, in the absence of ancestral allometry, by the higher $\mathrm{I}_{\mathrm{R}} / \mathrm{L}$ of C . (Cc.) obscurts.

Within C. (Cc.) obscurus maximum height undergoes an overall phyletic increase in the passage from Aalenian (74 mm) to Bajocian (93.8 mm) to Bathonian (69 mm) to Tithonian (122 mm) to Valanginian (206 mm). The temporary reversal to the otherwise smooth trend in the Bathonian is undoubtedly a real phenomenon since a large number of specimens are available for measurement from the stage. There seems also to be a phyletic reduction in H/L from the Bathonian to Tithonian but the lack of data from intermediate stages precludes an assessment of whether or not evolution occurred gradually. Since H/L decreases during the ontogeny of ancestral populations the phyletic reduction in H / L could have been brought about by acceleration of shape development with respect to size.

Text fig. 131: Camptonectes (Camptochlamys) clathratus - height/length.

Camptonectes (Camptochlamys) clathratus (Roemer 1836)
Pl. 4, Figs. 23, 26, 27, Pl. 5, Figs. 1-3, 6; text figs. 131-136

Synonymy

1836 Pecten clathratus sp. nov; ROEMER, p. 212, pl. 13, fig. 9.
1839 Pecten intertextus sp. nov; ROEMER, p. 27, pl. 18, fig. 23.
1842 Pecten collinews sp. nov; Buvignier in Sauvage and Buvignier, p. 533, pl. 4, fig. 7.
v*? 1850 Pecten Rosimon sp. nov; D'Orbigny, v. 1, p. 327 (BOULE, 1913, v. 8, p. 92, pl. 2, figs. 26, 27).
v* 1852 Pecten Michaelensis sp. nov; Buvignier, p. 24, pl. 32, fig. 4.
$\mathrm{v}^{*} 1853$ Pecten retiferus sp. nov; Morris and Lycett, p. 9, pl. 1, figs. 15, 15a.

1853 Pecten personatws Goldfuss; MORRIS and LyCETT, p. 11, pl. 1, fig. 17 (non fig. 17a, non GOLDFUSS sp.).
1853 Pecten clathratus ROEMER; MORRIS and LyCETT, p. 13, pl. 1, figs. 19, ?19a.

1860 Pecten clathatrus ROEmER; COQUAND, p. 79.
1862 Pecten pertextus sp. nov; Etallon in Thurmann and Étallon, p. 257, pl. 36, fig. 7.
Pecten Frotei sp. nov; Étallon in Thurmann and Étallon, p. 258, pl. 36, fig. 9.
1863 Pecten Michaelensis Buvignier; Lycett, p. 34, pl. 33, fig. 3.
1863 Pecten intertextus Roemer; DOLLFUS, p. 81, pl. 15, figs. 1-3.
1867 Pecten retiferus Morris and Lycett; Laube, p. 10.

1875 Pecten intertextus ROEMER; DE LORIOL and Pellat, p. 200, p. 23, fig. 2.
1893 Pecten intertextus ROEMER; DE LORIOL and LAMBERT, p. 138, pl. 11, figs. 8, 8a.
Pecten intertextus Roemer; de Loriol, p. 40.
1904 Pecten intertextus ROEMER; DE LORIOL, P. 216.
1905 Pecten (Chlamys) retiferus MORris and Lycett; Kilian and Guébhard, p. 758.
1905 Pecten intertextus Roemer; Peron, p. 219.
non 1906 Chlamys rosimon (D'Orbigny); COSSMANN, p. 4 , pl. 1, figs. 7-9.

1906	Chlamys retifera (MORRIS and LiCETT; COSS MANN, p. 5, pl. 1, figs. 10, 11.
1907a	Chlamys retifera (MORRIS and LyCETT); COSS MANN, p. 240, pl. 8, figs. 14, 15.
1923	Chlamys Lafayi sp. nov; LisSAJous, p. 159, pl. 30, figs. 1, 2.
v non 1926	Chlanys Rosimon (D'Orbigny); Staesche, p. 38, pl. 2, fig. 1.
v 1930a	Chlamys (Camptochlamys) intertextus (ROEMER); Arkell, p. 103, pl. 8, figs. 1, 2.
? 1931	Pecten (Chlamys) pertextus var. densiradiatus var nov; Sokolov and Bodylevsky, p. 54, pl. 3, figs. 6a, 6b.
(?) 1936	?Camptochlamys Rosimon (D'ORBIGNY); DECHASEAUX, p. 38.
1936	Camptochlamys retiferus (MORRIS and Lycett); Dechaseaux, p. 39.
1936	$\begin{aligned} & \text { Camptochlamys Lafayi (Lissajous); Dechas } \\ & \text { Eaux, p. } 39 \text {. } \end{aligned}$
1936	Camptochlamys mitertextus Roemer; Dechas EAUX, p. 39.

Chlamys retifera (MORRIS and Licett; CossMANN, p. 5, pl. 1, figs. 10, 11.

Chlamys retifera (MORRS and LiCeII); Coss MANN, p. 240, pl. 8, figs. 14, 15.
v non 1926 Chlanys Rosimon (D'Orbigny); StaesChe, p. 38, pl. 2, fig. 1.

1931 Prkell, p. 103, pl. 8, figs. 1, 2 . nov; SOKOlOV and BODYlevsky, p. 54, pl. 3, figs. 6a, 6b.

1936 Camptochlamys retiferus (MORRIS and LyCETT); Dechaseaux, p. 39.

1936 EAUX, p. 39. EAUX, p. 39.

1948 Camptonectes (Cantptochlamys) intertextus (Roemer); Cox and Arkell, p. 14.
(?) 1948 Camptonectes (Camptochlamys) rosimon (D'ORBigny); Cox and Arkell, p. 14.
? 1961 Camptonectes rigidus (J. Sowerby); Rossi RonChetti and Fantini Sestini, p. 122, pl. 13, figs. 1, 2 (non J. Sowerby sp.).
1961 Camptochlamys retiferus (MORRIS and LYCETT); Barbulescu, p. 701.
1961 Camptochlamys intertextus (ROEMER), BARBULESCU, p. 701.
1964 Camptonectes retiferus (MORRIS and LyCETT); J.-C. FISCHER, p. 19.
? 1977 Camptonectes (Camptochlamys) cf. intertextus (ROEmer); Kelly, p. 88, pl. 1, figs. 18a-c, 19, 20.
The holotype (M) of Pecten clathratus RoeMER 1836, p. 212, pl. 13, fig. 9 is probably in the Roemer-Pelizaeus-Museum, Hildesheim, W. Germany. It was derived from the Oxfordian of N. Germany.

Text fig. 132: Camptonectes (Camptochlamys) clathratus - height/umbonal angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'P. testa lineis capillaribus acutis radiantibus rectis concentricisque regulariter clathrata, interstitiis planis quadratis.

Die ziemlich dünne Schale scheint fast kreisrund gewesen zu sein und trägt oben zahlreiche, haarförmige, schief in die Höhe gerichtete, gleich weit von einander stehende Linien, von den gerade ausstrahlende mit concentrischen ein sehr zierliches, feines Gitterwerk bilden. Die viereckigen, meist
mehr breiten als hohen Flächen zwischen den Linien sind ganz flach.
Das abgebildete Bruchstück fand sich im oberen Coral rag des Spitzhuts mit Terebr. tetragona und Turbo princeps zusammen.'

2. AMENDED DIAGNOSIS

Distinguished from C. (Cc.) obscurus by the fact that the radial striae reach the ventral margins at all stages in ontogeny.

Text fig. 133: Camptonectes (Camptochlamys) clathratus - intersinal distance on left valve/length.

3. AMENDED DESCRIPTION

Essentially similar to C. (Cc.) obscurus apart from the diagnostic feature (see Section 2), possibly somewhat higher mean H/UA (text fig. 132), apparent allometric decrease in AH / L and $\mathrm{I}_{\mathrm{L}} / \mathrm{L}$ (text figs. 134, 133), lower comarginal lamellae and usual lack of divaricate striae (see p. 133). There are between 33 and 45 radial striae on the left valve and between 45 and 68 on the right valve (Pl. 4, Figs. 23, 26, 27, Pl. 5. Figs. $1-3,6)$.

Other metric proportions are plotted in text figs. 131, 135.

4. DISCUSSION

As for C. (Camptochlamys) obscurus the disjunct stratigraphic range of the species described in Section 3 combined with a failure to appreciate the range of ornamental variation has led to the evolution of two taxonomic schemes for M . and U. Jurassic representatives. Arkell (1930a) considered that Oxfordian specimens (referred to 'Chlamy's' (Cc.) intertextus (Roemer)) differed from Bathonian specimens (referred to 'Ch.' (Cc.) retiferus (Morris and Lycett)) by the possession of 45-50 compared with 35-40 radial striae. Since Arkell
failed to recognise the disparity in numbers of striae between right and left valves this gives an incomplete picture of variation. However, if one assumes that counts were taken only from left valves, as seems likely, then the existence of Oxfordian specimens with 40 striae (e. g. YM 557) and Bathonian specimens with 45 striae (e. g. BM 65901) clearly contradicts Arkell's hypothesis. Metric proportions offer no other grounds for a distinction, the larger Oxfordian forms plotting within the range of extrapolated Bathonian ontogenies (text figs. 131-135). Moreover the figured original of 'Pecten' intertextus R $\cap E M E R$, although only a broken specimen, is indistinguishable from the lectotype of ' P.' retifcrus Morris and Lycfit (IGS 9169; Pl. 4, Fig. 26).

On the basis of the preceding discussion the Oxfordian species ' P.' pertextus Étallon and ' P.' Michaelensis BuvigNIER (both described as having finer ornament than ' P.' intertextus) cannot be separated from the species described in Section 3. In addition the figured original of ' P.' Michaelensis (ENSM L340; Pl. 5, Fig. 3) has metric proportions (1) which plot within the range of projected ontogenies of the species described in Section 3. 'Ch.' Lafayi Lissajous was separated from 'P.' Michaclensis only by a difference in ornament at large sizes. Since the figured original of the latter species turns

Text fig. 134: Camptonectes (Camptochlamys) clathratus - anterior hinge length/length.
out to be a large abraded specimen this is an insufficient basis for a specific distinction.

The present author has been unable to trace the original reference to 'P.' colline us Buvignier but Arkell (1930a) places the species in synonymy with 'Ch.' (Cc.) intertcxtus. 'P.' Frotei Étallon was compared with ' P.' collineus in the original description and metric proportions of the original figure (2) plot within the range of the species described in Section 3.

The holotype (M) of 'P.' Rosimon d'Orbigny (MNO 2905) is a poor specimen whose large number of radial striae suggests that it may be referable to Radulopectenvagans (the interpretation followed by Cossmann [1906]) rather than the species described in Section 3 (the interpretation apparently followed by Dechaseaux [1936] and Cox and Arkell [1948]). The specimen (GP1T 1592/5; Pl. 8, Fig. 16) referred to 'Ch.' rosimon by Staesche (1926) is much more strongly ornamented than d'Orbigny's holotype and belongs in Ch. (Ch.) textoria.

Of the species considered to be synonymous above, ' P.' intertextus Roemer was the first designated. However, an earlier species 'P.' clathratus Roemer has the characteristic reticulate ornament of the species described in Section 3 and
although only described from a fragment must he wi.n historical precedence. One of Morris and Lycrifin, 18i3) figures of 'P.' clathratus (pl. 1, fig. 19) is indistinguishable from Roemer's species but the other (pl. 1, fig. 19a) is more reminiscent of C. (C.) laminatus. The same authors also figure an example of Roemer's species (pl. 1, fig. 17) under the non-synonymous specific name 'P.' persomatus Goldfuss (see p. 24). The other figured example of ' P.' personatus (pl. 1, fig. 17a) may be referable to C. (C.) lammatus. A specimen referred to the non-synonymous species C. rigidus (J. Sowerby) by Rossi Ronchetti and Fantini Sestini (1961) is discussed on p. 127.

Kflly's (1977) record of C. (Cc.) cf. intertextus from the M. Volgian can only tentatively be placed in synonymy because the small size of his specimens allows the possibility of confusion with juveniles of C. (Cc.) obscurtus, a common species at this horizon. Similar reasoning applies to the tentative inclusion of ' P.' (Ch.) pertextus var. densiradiatus Sokoloy and Budylevsky (1931).

5. STRATIGRAPHIC RANGE

Two specimens (BM LL1593, LL23688) from the Bajocian of S. England are probably referable to C. (Cc.) clathratus as

Text fig. 135: Camptonectes (Camptochlamys) clathratus - posterior hinge length/length.
are a number of specimens from the U ．Bajoctan in DM．DE． CHいり せN（1936）records an indeterminate number of speci－ mens from the Bajocian of the E．Paris Basin．In the appro－ priate facies（see Section 8）the species is quite common in the Bathonian but it becomes rare again in the Callovian．Two specimens are known from the U ．Cornbrash of Yorkshire （YM 592，BM 47434），a few specimens reside in DM，and DE Chaseaux（1936）records an indeterminate number of speci－ mens from the Callovian of the E．Paris Basin．The species is locally quite common in the Oxfordian but becomes rare in the Kimmeridgian，unequivocal records being limited to NW France（BM 25346，65895；Dollfus，1863），W＇．France（one specimen，author＇s collection）and the Jura（Thurmann and Étallon，1862）．

Kflly（1977）records nine specimens，which may be refer－ able to C．（Cc．）clatbratus（see Section 4）from the M．Volgian （M．Tithonian）of Lincolnshire．

6．GEOGRAPHIC RANGE

C．（Cc．）clathratus occurs widely in northern and central Europe（text fig．136），its local distribution and abundance being largely controlled by the development of the appro－ priate sedimentary facies（see Section 8）．Records outside Europe are limited to two dubious specimens（see Section 4）， one from Afghanistan（Rossi Ronchetti and Fantini Sestini， 1961）and the other from Spitzbergen（Sorolov and Body－ Levshy，1931）．

Text fig．136：Camptonectes（Camptochlamys）clathratus－European distribution．

7．DESCRtPTION OF ECOLOGY

In the Bathonian of England C．（Co．）clathratus is found quite commonly in the Minchinhampton Beds（L．Batho－ nian）where it reaches a maximum height of 57.5 mm （BM LL1593）．The sediments are grain supported shelly oolites containing a diverse gastropod and bivalve fauna，including C．（Cc．）obschitus（Morris and Lycf Tt，1851－55）．The species is also quite common in the roughly contemporaneous Cal－ caire a Polypiers of Normandy and occurs in a coral bed in In－ dre with Spondylopecten（S．）palinurus and the＇coarse＇ phenotype of Chlamys（Ch．）textoria（Cossmann，1907a； J．－C．Fischer，1964）．

In the Oxfordian of Yorkshire large specimens of C．（Cc．） clathratus occur in the Malton Oolite（Plicatilis zone），reach－ ing a maximum height of 140 mm （YM 492D）．The sediments are oolites，usually poorly fossiliferous，but locally contain－ ing coral debris and such bivalves as the＇coarse＇phenotype of Ch．（Ch．）textoria，Lima，Exogyra，Opis，Gerrillia and Trichites，together with the gastropod Pseudomelania （J．Wright，1972）．C．（Cc．）clathratus is rare in contem－ poraneous oolites on the Dorset coast（Osmington Oolite）in which coral debris is absent．The species is reported to be
common in reef and reef－derived sediments in the Yonne （Ptron，1905）and records from the Oxfordian of the Meuse （Buvignier，1852），Jura（de Loriol，1894，1904）and L．Sax－ ony（Roemer，1836）are from a similar facies，as may be records from the Kimmeridgian of the Jura（Thurmann and Étallon， 1862）．The author has collected a specimen from Kimmerid－ gian marls adjacent to patch reefs at La Rochelle（Charente Maritime）．

Other records of C．（Cc．）clathratus consist of small or in－ determinate numbers of specimens．

8．INTERPRETATION OF ECOLOGY

The usual occurrence of C．（Cc．）clathratus in oolitic and reefal deposits indicates a prelerence for environments of high energy．The rarity of the species in the Callovian and Kim－ meridgian of northern and central Europe（see Section 5）and throughout the M．and U．Jurassic in southern Europe（see Section 6）can thus be viewed as a consequence of the wide－ spread development of low energy，clay－grade facies．

In the U．Jurassic of continental Europe there is a clear cor－ relation between the distribution of coral reef facies and that
of C. (Cc.) clathratus. Although the species occurs in oolites in the Oxfordian of Yorkshire, the occasional presence of corals and a reef-derived fauna may indicate that a substantial reef existed nearby (J. Wright, 1972) and thus an association with this facies for at least part of the life history cannot be ruled out. The rarity of C. (Cc.) clathratus in contemporaneous non-coralliferous oolites in Dorset is evidence that such sediments alone could not induce colonisation of an area by C. (Cc.) clatbratus. There are however few grounds for invoking the presence of unexposed reefs to explain the occurrence of C. (Cc.) clathratus in Bathonian oolites at Minchinhampton, although the recent discovery (Ager et al., 1973) of Isastrea and Thamnasteria should be noted. A clearer association with corals, if not with coral reefs, is indicated by occurrences in Normandy and Indre, and the presence in the latter area of pectinids which were at least able to colonise reefs is worth pointing out.

It can be summarised from the foregoing that there is a strong correlation between the occurrence of C. (Cc.) clatbratus und coralliferous deposits and that numbers may be highest in the vicinity of coral accumulations of reefal dimensions. It could be that level bottom environments adjacent to coral stands were inhabited when byssal fixation to corals became impossible in the later stages of ontogeny (see Section 9).

Since C. (Cc.) clathratus occurs with a high diversity fauna in, at most, moderate numbers, it was probably an equilibrium species (Lfvivton, 1970).

Other species of Camptonectes including the probable ancestor C. (Cc.) obscuruts (q. v.) show little sign of having competed with C. (Cc.) clathratus.

9. FUNCTIONAL MORPHOLOGY

Since C. (Cc.) clathratus is in most morphological respects identical to C. (Cc.) obsctrus, a juvenile byssate followed by an adult reclining mode of life can be similarly inferred. Corals probably constituted the favourite site for byssal attachment and oolites seem to have been preferred for the reclining phase (see Section 8).

10. ORIGINS AND EVOLUTION

The most likely ancestor for C. (Cc.) clathratus is C. (Cc.) obscurus. Since the radially striate ornament characteristic of adult representatives of the former species is present in juveniles of the latter trans-specific evolution could have been largely brought about by the heterochronic retardation of shape development with respect to size. As C. (Cc.) clatbratus first occurs within the geographic range of C. (Cc.) obscurus the possibility of sympatric speciation cannot be entirely ruled out. It may be that speciation followed after a few individuals of C. (Cc.) obscirtus switched to corals for juvenile byssal attachment, whence disruptive selection and establishment of a stable polymorphism ensued (cf. Tauber and Tauber, 1977a, b).

Within C. (Cc.) clathratus there is a marked increase in maximum height from the Bathonian (57.5 mm) to the Oxfordian (140 mm) although the paucity of intermediate records precludes an assessment of wether or not this repre-
sents a gradual trend. Phyletic increase in size combined with a neotenous origin are strong indicators of the prevalence of ' k ' selection (Gould, 1977).

Genus EOPECTEN Douville 1897
(Synonyms etc. Velata Quenstedt 1856 [non Griffith and Pidgeon 1934, obj.]
Velopecten Philippı 1899 [pro Velata
Quenstedt 1856, non Velates Montfort 1810]
Velatopecten Rollier 1906 [nom. van.])

Type species. OD; Douvile 1897, p. 203; Hinnites tuberculatus Goldfuss errore pro Spondylus tuberculosus Goldfuss 1836, p. 93, pl. 105, fig. 2; Aalenian/Bajocian, Swabia.

AMENDED DIAGNOSIS

Medium sized to large, acline, more or less irregular in outline at all stages of growth, some specimens irregularly puckered or with allomorphic ornament; inequivalve, with LV convex and RV flat or concave; left anterior wing large, indistinctly demarcated, right anterior auricle elongate, deep subauricular notch with ctenolium below it; posterior wing rather small; RV with narrow, obtusely triangular cardinal area with deep, narrowly triangular pit below beak corresponding to resilium (same in LV); interior of RV in some specimens with blunt oblique internal ridge originating near resilifer; ornament of striae and costae of varying strengths. L. Jur. (Hettang.)-L. Cret. (Alb.), cosmop.

DISCUSSION

In his diagnosis Hertlein (1969: N373) implied that Eopecten was cemented early in ontogeny. The present author can find no positive evidence for this. The hinge characteristics of the left valve, unknown to Hertlein, are now clear.

The immense variability within Eopecten, at least some of which is demonstrably ecophenotypic (see p. 154), has resulted in the designation ot a plethora of specific names by typological authors. Rollier (1915) alone cites 51 species from the Mesozoic of central W. Europe. Such numbers seem highly improbable in the light of analyses of Recent communities and with the evidently slow rate of species turnover in the Pectinidae. However, it remains difficult to evaluate the extent of ecophenotypic 'noise' in order to delineate true species. An analysis along the lines adopted for Rudulopecten vagans (see Johnson, 1981) might prove instructive although sampling problems would undouhtedly be great. In the lack of such an analysis the author has been forced to adopt a more subjective approach.

Ornamental variation in left valves appears to be distributed around three modal patterns, distinguished as follows:

1. Ornament clearly differentiated into costae and striae in all but very large specimens.
2. Intercalary costae rapidly gainıng the same size as original costae which are themselves of approximately equal size.
3. Intercalary costae rapidly gaining the same size as original costae but two of latter greatly enlarged and bearing tubercles.
Since, at any one locality, there is a marked tendency for only one of the modal patterns (and variants thereof) to be present it may be that the modes themselves represent ecophenotypic variants and that therefore all Jurassic Eopecten should be placed in a single species. However, in the lack of a statistical analysis of ontogeny (see above) and of an adaptive reason for such ecophenotypic variation it is preferred herein to treat the three modes as being indicative of three separate species (respectively E. velatus, E. spondyloides and E. abjectus) and to assume that the mutual exclusion at any one locality is due to inter-specific competition.

There is some suggestion, based on the number of costae (see p. 152), that forms grouped around mode 1 may themselves be divisible into two groups. However, until separate contemporaneous lineages can be demonstrated the author prefers to attribute such differences as do exist to phyletic evolution within a single species.

Due to the difficulties in defining Eopecten species at the outset comprehensive descriptions or figures have to be available (in the absence or non-availability of type material) before a taxonomic species can be assigned to one of the above groups. Consequently a number of rather poorly characterised taxonomic species of Eopecten have had to be left out of the synonymy lists pending examination of type material. These include: in Goldfuss (1836), 'Himmites' tenuistriatus Munster; in Tietze (1872), 'H.'subluevis; in Gemmellaro) and Di Blasi (1874), 'H.' W'aggeni; in Gfmmillaro (1878), 'H.'ctenopsides, 'H.' "aracnoides; in Blaschkr (1911), 'P.'kotoncensis; in Rollit R (1915), 'H.' ('Prospondylus') Greppini, 'H.' ('Pr.') ferrugineus, 'H.' ('Pr.') Dollfusi, 'H.' ('Pr.') Argoviensts, 'H.' ('Terquemia') Censontensis; in Paris and Richardson (1916), Eopecten doultingensis; in DE Gre Gorio (1922); 'Pecten' flexocostulutus.

Eopecten velatus (Goldfuss 1833)

Pl. 5, Figs. 4, 5, 7, 8; text figs. 137-141

	Sy
33	Pecten veluthes sp. nov; Goldfuss, p. fig. 2.
1833	Pecten tumidus sp. nov; Hartmann in v. Zieten. p. 68, pl. 52, fig. 1.
1836	Lema maequistruata sp. nov; Goldfuss, p. 81, pl. 114, fig. 10.
1836	Spondylus velatus sp. nov; Goldeuss, p. 94, pl. 105, fig. 4.
1850	Hinnites indequitstriatus sp. nov; D'Orbigny, v. 2, p. 22.
1853	Hinntes velatus (Goldfuss); Morris and LY CETT, p. 14, pl. 2, figs. 2, 2a.
v 1858	Pecten velatus Goldfuss: Quenstedt, p. 148, pl. 18, fig. 26, p. 184, pl. 23, fig. 3.
1858	Pecten velatus albus subsp. nov; Quenstedt. p. 628, pl. 78 , fig. 3.
on 1862	Pecten velatus (Goidfuss); Thurmann an Étallon, p. 266, pl. 37, fig. 12.

Synonymy

fig. 2
1836 L. 68 , pl. 52 , fig. 1.
Lemaequistrata sp. nov; Goldfuss, p. 81 , pl. 114, fig. 10.
3836 Spondylus velatus sp. nov; Goldeuss, p. 94, pl. 105, fig. 4.
22. p. 22.
non 1853 Hinntes velatus (Goldfuss); Morris and Ly CETT, p. 14, pl. 2, figs. 2, 2a.

- 1858 Pecten velatus Goldfuss: Quenstedt, p. 148, pl. 18, fig. 26, p. 184, pl. 23, fig. 3. p. 628, pl. 78, fig. 3.
non 1862 Pecten velatus (Goidfuss); Thurmann and Étallon, p. 266, pl. 37, fig. 12.

1862 Hinmites marquistriatus d'Orbigny; Thurmann and Étallon, p. 267, pl. 37. fig. 13.
1863 Hinnites Hautcoeuri sp. nov; DOllfus, p. 86, pl. 17, figs. 1, 2.
non 1864 Hinnites velatus (Goldfuss); Dumortifr, p. 70 , pl. 4, figs. 1-3.
1869 Hinnites Davaei sp. nov; Dumortier, p. 141, pl. 21, figs. 9, 10.
1872 Hinnites inaequistriatus d'Orbigny; de Loriol et al., p. 391, pl. 23, fig. 2.
1872 Hinnites velatus (Goldfuss); Tiftze, p. 108, pl. 3, fig. 2.
1 S74 Hinntes velatus (GOLDfuss); Dumortier, p. 308, pl. 62, figs. 3,4 (non p. 195, pl. 43, fig. 6).
1874 Henntes thurmanni sp. nov; Brauns, p. 343.
1874 Pecten hinnutiformis sp. nov; Gemmellaro and Di Blast, p.117, pl. 2, figs. 16-19.
1875 Pecten hinnitiformis Gemmellaro and Di Blasi; Gemmellaro, p. 49.
1876 Hinnutes tumidus (Hartmann); Tate and Blake, p. 365.

1878 Hinntes astartinus Greppin; De Loriol, p. 163, pl. 23, fig. 3.
188 Ia Hinnites inaequistriatus d'Orbigny; Boehm, p. 181, pl. 40, fig. 1.

1881a Hinnites gigas sp. nov; Boemm, p. 182, pl. 40, figs. 11, 12.
1881a Hinnutes subtilis sp. nov; BOEHM, p. 182, pl. 40, fig. 4 .
1883 Hinntes cl. astartinus Greppin; Boehm, p. 619, pl. 68, figs. 7. 8.
non 1886 Hunntes zelatus var. urgetus var nov; DF GregOrio, p. 20, pl. 13, figs. 1-6.
1886 Pleuronectites Aubryi sp. nov; Douville. p. 228. pl. 12, fig. 3.
1903 Velopecten of. asturtinus (Greppin); Remes, p. 207, pl. 19, fig. 13.

1903 Velopecten cf. inaequastriatus (D'Orbigny): RemEs, p. 207, pl. 20, fig. 1.
1904 Hinntes Bonjouri sp. nov; de Loriol, p. 231, pl. 25, figs. 1, 2.
1905 Hinntes maequistriatus (D'OrbigNY); PERON, p. 238.

1915 Hinnites (Prospondylus) Dumortier sp. nov; Rollier, p. 452.
1915 Hinntes (Prospondylus) Quenstedti sp. nov; Rollier, p. 453.
1915 Hinnites (Prospondylus) Toaraensis sp. nov; Rollier, p. 453.
1915 Hinnttes (Prospondylus) ammontictis sp. nov; Rollier, p. 461, pl. 30.
1915 Hinntes (Prospondylus) Orbignyi sp. nov; Rol. liER. p. 464.
Eopecten Dumortieri sp. nov; COSSMANN, pp. 48, 49, text figs. 1, 2.
non 1926 Velopecten velatus (Goldfuss); Arkeli, p. 549, pl. 34, fig. 6.
v 1926 Velopecten tumidus (Hartmann); Staesche, p. 117, pl. 4, fig. 7, pl. 5, fig. 4 .
v 1926 Velopecten velatus (GOLDfuss); Staesche, p. 122, pl. 6, fig. 11.
1928 Velata velata (Goldfuss); COX, p. 244.
1933 Velata maequistriata (D'OrbigNy); Dietrich, p. 67, pl. 8, fig. 129.

1935 Entolium hauptsmoorts sp. nov; KOHN, p. 469, pl. 18. figs. 2a-c.
1935b Velata velata (GOLDFUSS); COX, p. 4, pl. 1, figs. 2, 3.
v 1936 Velata Bonjouri (de Loriol); Dechaseaux, p. 70, pl. 8, fig. 14.

1936 Velata Hettangıensis sp. nov; Dechaseaux, p. 71, pl. 9, fig. 1.

1936 Velata tumidus (HARTMANN); KUHN, p. 250, pl. 11, fig. 2.
1939 Velata aubryi? (Douville); Stefanini, p. 186, pl. 20, figs. 10,11 , pl. 21, fig. 1.
1952 Eopecten aubryi (Douvilié); Cox, p. 52, pl. 6, figs. 3, 4.
1965 Eopecten aubryi (DOUvillé); Cox, p. 52, pl. 6, figs. 3, 4.
1965 Eopecten thurmanni (BRAUNS); COX, p. 53, pl. 6, fig. 8.

1965 Eopecten aff. albus (QUENSTEDT); COX, p. 54, pl. 6, fig. 7.
non 1973 Chlamys (Velata) cfr. velata (GOLDFUss); LEN TINI, p. 29, pl. 15, fig. 8

Neotype of Pecten velatus Goldfuss, p. 45, pl. 90 , fig. 2 herein designated; GPIT 1592/2; Pl. 5, Fig. 7 herein; L. Pliensbachian, Eslingen, S. Germany.

Text fig. 137: Eopecten velatus - European distribution.

Text fig. 138: Eopecten velatus - World distribution (Pliensbachian reconstruction).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

Pecten testa obliqua ovato-orbiculari convexa, costis linearibus distantibus (14) minoribus totidem intermediis lineisque pluribus interstitialibus, lineis concentricis subtilissimus confertis, auriculis inaequalibus decussatim lineatis.

E montibus Herciniae et Palatinatus superioris. M. B. M. M.

Schief eiförmig-kreisrund, flach-convex, mit 14 linienförmigen Rippen, mit welchen eben so viel etwas niedrigere, abgekurzte, abwechseln. Die Zwischenräume sind mit 2-3 feinen Linien ausgefült, und die ganze Fläche mit sehr zarten, gedrängten, concentrisch Linien gegittert. Die ungleichen Ohren haben ähnliche Rippen und Linien, und verlaufen sanft ansteigend gegen die Höhe des Wirbels.

Findet sich bei Quedlinburg, Bayreuth und Amberg.

2. AMENDED DIAGNOSIS

Distinguished from other species of Eopecten by the differentiation of the ornament on the left valve into costae and striae in all but very large specimens (e. g. BM 65900; Pl. 5, Fig. 8).

Text fig. 139: Eopecten velatus - height/length.

3. AMENDED DESCRIPTION

Disc shape extremely variable, often irregular (Pl. 5, Fig. 4), generally longer than high (text fig. 139), maximum height 110 mm (OUM J14501). Umbonal angle variable (text fig. $1+0$) usually increasing during ontogeny. Disc flanks low.

Text fig. 140: Eopecten velatus - height/umbonal angle.

Approximately equilateral to markedly inequilateral; inequivalve, right valve usually flat, left valve low to high convexity.

Intersinal distance greater in left valve than right, very large byssal notch with well developed ctenolium.

Auricles poorly demarcated from disc, variable in size, usually large with anterior (text fig. 141) larger than posterior. All auricles meeting hinge line at about 90°. Anterior auricle of left valve and both posterior auricles meeting disc at an acute angle. Anterior auricle of right valve meeting disc at an obtuse angle.

Right valve bearing a large number (<150) of tine radial striae (Pl. 5, Fig. 5). Ornament of left valve very variable, usually comprising between 15 and 20 (range 5-28) original radial costae (see Section 4) between each pair of which are +-6 (range 2-8) fine radial striae. Both costae and striae of variable height and often sinuous (Pl. 5, Figs. +, 7, 8).

Shell thickness variable, left valve usually thicker than right.

t. DISCUSSION

Specimens possessing the diagnostic features of Section 2 which have been described from the L. Jurassic have a minimum of 14 ('Pecten' velatus Goldruss) and a maximum of 24 ('Hinnites' Davaei Duvortier) costae on the left valve. Museum specimens of the same age usually possess between 15 and 20 costae. Specimens described from the U. Jurassic may have as fews as 5 ('H.' inaequistriatus d'Orbigny; DE Lorinl et al.) or as many as 28 ('P.'velatus albus Quens. TIITT) costae. Moreover the large number of specimens which have been described with costal counts below the L. Jurassic range (c. g. Eopecten tharmanni (Brauns); Cox with 8, Velopecten cf. inaequistriatus (D'OrbigNy); Remes with 10 , 'P.' himitiformis Gfumfllaro and Di Blasi with 10-12, 'H.' cf. astartemus de Loriol; Boehm with 12 and E. aff. albus (Qur vstedt): Cox with 13) indicates that the mean number of costae may be less in U. compared with L. Jurassic

Text fig. 1+1: Eopecten velatus - anterior hinge length/height.
samples. Specimens with costal counts within the L. Jurassic range do however exist (e. g. 'H.' astartinus Greppin; de Loriol with 16, ' H.' cf. astartinus Greppin; Boebm with 17 and ' V.' velatus (Goldfuss); Staeschf with 20) and in the absence of any evidence for a bimodal distribution suggest that the increase in range and possible reduction in mean number of costae is due to phyletic evolution within a single lineage. All forms possessing the diagnostic features of Section 2 are therefore included within the same species (see p. 150), Earlier authors labelled many individual variants of this species with a name thus a large number of synonymous taxonomic species have been generated. It seems futile to set down the peculiarities of each of these. Rather, those which are adequately characterised such that, in the author's opinion, they undoubtedly fall within the range of Section 3 , are placed in synonymy and discussion is mainly limited to taxonomic problems. A large number of inadequately described or poorly illustrated secondary references to synonymous species are excluded from the synonymy and are not taken into consideration in suhsequent sections. They may be traced in Quenstedt (1843, 1852), Oppel (1853, 1858), CoQuand (1860), Trautschold (1861), Phillips (1871), Neumarr (1871), Terquem and Piettf (1865), Brauns (1871, 1874), Tate and Blakf (1876), Bofhy (1881), Alth (1882), Roeder (1882), Simpson (1884), Kilian (1889), Botto-Micca (1893), Behre ndsen (1893), Moricke (1894), Greppin (1898), Kilian and Guebhard (1905), Trauth (1909), Simionfscu (1898, 1910), Paris and Richardson (1916), Faure-Marguertt (1920), Newton (1921), Blanchet (1923), Ernst (1923), Roman (1926), Lanquine (1929), Arkell (1930a), Yín (1931), Cox (1935a), Dechaseaux (1936), Parent (1940), Rakus (1964), Bfyyfl and Geyfr (1966), Urlichs (1966), Nitzopoulos (1974) and Y'anani (1975). Lfntini's (1973) record of 'Chlamys' ('Velata') cfr. velata (Golduss) appears to be a misidentification of Chlimys (Ch.) textoria.
'Pecten' velatus Goldfuss and 'P.' tumidus Hartvann, both described in 1833, appear to have equal claims to be the senior synonym of the species described in Section 3. However, Cox (1928) has pointed out that 'P.' tumidus HartWann is a junior primary homonym of ' P.' tumidus Turton (1822) and is therefore not available. There is no trace of the type material to 'Pecten' velatus in the Gordfuss Collections of the BSPHG and GPIB. A neotype (GPIT 1592/2; Pl. 5, Fig. 7) is therefore herein designated. Goldfuss (1836) also applied the name velatus to Spondylus but his figure is clearly of an Eopecten so this usage must be rejected as a junior secondary homonym. Cox (1965) raised Qufnstedt's (1858) subspecies ' P.' velatus albus to specific rank to act as a replacement name for comparable U. Jurassic forms. However, this manoeuvre is rendered superfluous by the present author's inclusion of both the 1833 and 1836 uses of velatus Goldfuss within the same hypodigm. Perhaps as a reaction to the evident taxonomic confusion a number of authors have applied the name velatus as a blanket term to all Jurassic Eopecten. Specimens so named in Morris and Lycett (1853), Thurmann and Étallon (1862), Dumortier (1964), De Grf. gorio (1886d) and Arkfle (1926) together with some of the specimens (see Synonymy) so named in Dumortier (1874) are clearly representative of E. spondyloides.
The name inaequistriatus presents a similar case to that of velatus. Cox (1965) rejected 'H.' inaequistriatus d'Orbigny
(1850) as a junior secondary homonym of 'Lima' maequistriata Goldfuss (1836) since both species in fact belong to Eopecten. The specific name thurmanm Brauns was adopted for forms similar to d'Orbigny's species. However, this manoeuvre is rendered unnecessary by the present author's inclusion of d'Orbigny's and Goldfuss's species within the same hypodigm. It should be noted that the 1850 authorship of inaequistriatus should undoubredly be credited to D'Orbig.vy rather than to Voltz as de Loriol et al. (1872), Boehm (1SS1), Remes (1903), Peron (1905) and Diftrich (1933) have assumed. Voltz's use of the name exists only in an unavailable manuscript form.

The original authorship of ' H.' astartinus is that of Greppin rather than df Loriol, as Bofhm (1883) and Remes (1903) have supposed, while the original authorship of ' P.' tumidus should be attributed to Hartmann rather than v. Zieten as Tate and Blafe (1876) have assumed.
Although they were not figured Rollier's (1915) species 'H.' ('Prospondylus') Quenstedtn and 'H.' ('Pr.') Toarciensis can confidently be placed in synonymy because they were founded on specimens described in Quevstedt (1858) which are clearly referable to E. velatus. The same can be said for 'H.' ('Pr.') Orbignyi and 'H.' ('Pr.') Dumortieri which were based on specimens described in respectively Peron (1905) and Dumortifr (1864).

5. STRATIGRAPHIC RANGE

The earliest certain records of E. velatus are from the Planorbis zone of the Rhone (Dumortifr, 1864) and the Hettangian of Belgium (Dechasfaux, 1936). A few specimens are known from the Sinemurian of S. Germany (GPIT) and thereafter the species is relatively common at most horizons until the U . Toarcian. Aalenian records are limited to an indeterminate (probably small) number of specimens from the Rhone (Dumortier, 1874) and a single specimen from the E. Paris Basin (NM). Bajocian records are similarly limited to indeterminate numbers of specimens from Ethiopia (Douvis. Lf, 1916) and Somalia (Stefaninı, 1939), two specimens from N. Italy (BM L61819, L61820) and one from S. England (BM 50552). The species is unknown from the Bathonian but is recorded from the Callovian of NW India (Cox, 1952), E. Africa (Cox, 1965), Portugal (BM LL30871) and N. England (BM 47438). Unequivocal L. Oxfordian records are limited to a small number of specimens from E. Africa (Cox, 1965) but in the U. Oxfordian E. velatus occurs widely and is common in the Yonne (Peron, 1905). Thereafter the species occurs sporadically at most levels until the U. Tithonian (Bufh̀, 1883; Remes, 1903).

6. GEOGRAPHIC RANGE

In Europe (text fig. 137) E. velatus is a widespread species. The paucity of records from the M. Jurassic of Europe is temporally correlated with the appearance of the species in E. Africa and India (text fig. 138) and probably signifies a migration along the southern shores of Tethys, perhaps as a result of competitive exclusion by the common European species, E. spondyloides (see Section 8) and E. abjectus.

7. DESCRIPTION OF ECOLOGY

E. velutus is first recorded in any numbers from L. Pliensbachian clays, marls and limestones in S. Germany, where it reaches a maximum height of 63 mm (GPIT). In similar facies in the Margaritatus zone (U . Pliensbachian) of the same area the species attains a height of 64 mm (GPIT). However, in chamosite oolites of the Banbury Ironstone (Spinatum zone) a height of 110 mm (OUM J14501) is reached, although specimens are rare (assoc. fauna p. 16). In the widespread bituminous shale facies of the L. Toarcian E. velatus is similarly rare but in the U. Toarcian marls and limestones of S. Germany the species is relatively common, reaching a maximum height of 41 mm (GPIT). The associated fauna consists mainly of ammonites and belemnites. An isolated specimen from the Toarcian of France (BM 65900) reaches a height of 75 mm while in the M. Jurassic, when E. velatus is rare in Furope, a specimen from the Aalenian of France (NM) attains a height of 101 mm .

In the U. Oxfordian E. velatiss is reported to occur commonly in reef limestones in the Yonne (Pfron, 1905) where E. spondyloides seems to be rare (assoc. fauna p. 88). It also occurs in similar facies in the Jura, reaching a maximum height of 70 mm (De Lorior, 1904) but is rare in the U. Oxfordian of England where E. spondyloides is common. In the Kimmeridgian E. velatus is found sporadically in the faunally depauperate marls and limestones of Switzerland (de Loriol, 1878) and S. Germany (Staesche, 1926) where it reaches a maximum height of 75 mm (GPIT). In the L. Tithonian E. velatus returns to reef facies in Sicily (Gemmellaro and Dı Blasi, 1874; Gfmuellaro, 1875) where, however, E. spondyloides is a much more abundant species. In the U. Tithomian E. velutus appears to be common in the Stramberg coral reef (assoc. fauna p. 88) reaching a maximum height of 84 mm (Boehm, 1883; Remes, 1903).
The great majority of museum specimens are left valves and those from argillaceous horizons such as the U. Toarcian and Kimmeridgian (e. g. OUM J33475, BM unnumbered, GPIT) often show xenomorphic ornament derived from ammonites (Pl. 5, Fig. 4). Apart from those cases discussed above E. velatus is an infrequent species.

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that throughout most of its range E. velatus was an inhabitant of argillaceous facies. In some cases the soupy substrates characteristic of such facies seem to have been avoided by means of fixation to the hard shells of ammonites. However, far from all specimens show evidence for such a mode of life. Moreover, E. velatus is conspicuously rare in argillaceous deposits such as occur in the U. Jurassic of the peri-Mediterranean region and the L. Toarcian of N. Europe where ammonites are abundant but benthos is very sparse. Attachment to the living pelagic ammonite therefore seems improbable and it is more likely that some henthic element, probably bivalves, constituted the usual attachment site while dead ammonite shells resting on the sea floor provided an acceptable, if not ideal, alternative where benthos was restricted (e. g. U. Toarcian and Kimmeridgian marls and limestones). Viewed in these terms the abundance of E. velatus in some reefs can be seen as a re-
sponse to the abundance of hard bodied benthic elements (including bivalves) providing numerous suitable attachment sites. The absence or rarity of the species in other coralliferous horizons (e. g. U. Oxfordian of England, L. Tithonian of Sicily) is correlated with the presence of numerous E. spondyloides and is therefore suggestive of a competitive reaction (see Section 6). There seems to be no definite correlation between facies type and the maximum size of E. velatus.

Irregularly shaped Recent morphological analogues of E. velatus include Pedum spondyloideum, a species which lives byssally attached deep within coral heads (YONGE, 1967; Waller, 1972b), and Hinnites multirugosus, a species which cements its right valve to rocks and other bivalves (Yonge, 1951).

9. FUNCTIONAL MORPHOLOGY

The extremely large byssal notch of E. velatus implies that byssal fixation could have been maintained throughout ontogeny. The reduced ornamentation of the right valve is adaptive for tight byssal fixation and the general irregularity of shape, occasional presence of undoubted xenomorphic ornament, and restriction of serpulid encrustation to the left valve indicates that the right valve was indeed closely applied to the substrate for long periods. The variability of shell form led many earlier authors to presume a cemented mode of life similar to that of Hinnites, to which genus the species was thus assigned (see Synonymy). The paucity of right valves also seems to argue for this hypothesis. However, $\operatorname{Cox}(1942)$ in a survey of Eopecten right valves, including those of E. velatus, was unable to find positive evidence of cementation. Moreover, A. Seilacher (pers. comm., 1977) has observed discontinuities in the pattern of xenomorphic ornament derived from ammonites which imply movement of the shell. Thus tight fixation must have been effected solely by a renewable byssus rather than by a byssus and a permanent cement. The rarity of right valves may be explained by their relative thinness and increased susceptibility to breakage.

Pedum spondyloideum and crevice-dwelling individuals of Himites multirugosus (see Section 8) show ventral migration of the hinge line as an adaptation to living in confined spaces where both valves make contact with the substrate upon gaping. This feature has not been observed in E. velatus so it would seem that the species did not occupy such microhabitats. Due to the considerable height attained $(84 \mathrm{~mm})$, it is doubtful whether E. velatus could have been byssally supported from above in reef facies. In the lack of evidence for crevice/fissure dwelling it would appear that the species must have attached to roughly horizontal upward-facing surfaces.

10. ORIGINS ANI) EVOLUTION

Since E. velatus is first recorded from the Planorbis zone its origins probably lie in the Trias. Stafsche (1926) considered that Chlamys dispar $(?=\mathrm{Ch} .(\mathrm{Ch}$.$) valoniensis \mathrm{q} . \mathrm{v}$.) was ancestral but Dechasfaux (1936) has pointed out that the Trias species 'Pecten' Morrissii and ' P.' Albertii are very similar to Eopecten and these represent a more plausible root stock.
E. velatus apparently undergoes a phyletic increase in range and reduction in mean number of costae in the passage
from L. to U. Jurassic (see Section 4). Maximum height follows an oscillatory course in the passage from L. Pliensbachian (63 mm) to U. Pliensbachian (110 mm) to Toarcian (75 mm) to Aalenian (101 mm) to Oxfordian (70 mm) to Kimmeridgian (75 mm) to Tithonian (84 mm).

Eopecten spondyloides (Rofmer 1836)

Pl. 5, Figs. 9-14, Pl. 6, Figs. 2, 4, 7, ?Fig. 1; text figs. 142-144

Synonymy

1822 Ostrea ?; Young and Bird, pl. 10, fig. 3.
pv^{*} ? 1836 Spondylustuberculosus sp. nov; GOLDFUSS, p. 93. pl. 105, figs. 2a, 2b.
1836 Avicula spondyloides sp. nov; Roemer, p. 87, pl. 13, figs. 14a, 14b.
1850 Avicula jason sp. nov; D'OrBigny; v. 1, p. 313 (BoUle, 1912, v. 7, p. 161, pl. 2, figs. 17-19).
1850 Avicula janthe sp. nov; D'Orbigny; v. 1, p. 313 (Boule, 1912, v. 7, p. 162, pl. 1, figs. 47, 48).
1850 Hinnites Psyche sp. nov; D'Orbigny, v. 1, p. 314 (Boule, 1912, v. 7, p. 165).
v* 1850 Hinnites Pamphilis sp. nov; d'Orblgny, v. 1, p. 342 (BOULE, 1925, v. 14, p. 161, pl. 20, fig. 14).
$v^{*} 1850$ Hinnites Panischs sp. nov; D’OrbigNy, v. 1, p. 342 (BOUle, 1925, v. 14, p. 161, pl. 20, fig. 13).
1853 Hinnites velatus (GOLDFUSS); MORRIS and LyCETT, p. 14, pl. 2, figs. 2, 2a (non GOLDFUSS sp.).
1853 Hinnites tegulatus sp. nov; MOrRis and Lycett, p. 14, pl. 2, figs. 3, 3a.

1855 Hinnites abjectus (Phillips); Morris and Lycett, p. 125, pl. 14, fig. 3 (non Phillips sp., non pl. 9. fig. 7).
1858 Pecten tuberculosus Gingensis subsp, nov; QUEN STEDT, p. 379, pl. 51, fig. 4 (?GOLDFUSS sp.).
non 1858 Pecten tuberculosus (GOLDFUSS); QUENSTEDT, p. 434, pl. 59, figs. 9, 10.

1859 Pecten Parisoti sp. nov; CONTEJEAN, p. 313, pl. 23, figs. 19-21.
1862 Hinnites velatus (Goldfuss); Thurmann and Etallon, p. 266, pl. 37, fig. 12 (non Goldfuss sp.).
$\mathrm{v}^{\text {* }} 1863$ Hinnites fallax sp. nov; DOllfus, p. 85, pl. 15, fig. 14, pl. 16, figs. 9, 10.
1864 Hinnites velatus (GOlDfuss); Dumortier, p. 70, pl. 4, figs. 1-3 (non GOldFuss sp.).
1867 Hinnites Gingensis (Quenstedt); Waagen, p. 633, pl. 31, figs. 1a, 1b, 2a, 2b.

1872 Hinnites fallax DOLLfUS; DE LORIOLet al., p. 394, pl. 23, fig. 3.
1872 Hinnites Cornueli sp. nov; DE LORIOL in DE LORIOL et al., p. 395, pl. 23, fig. 4.
1874 Hinnites velatus (GOLDFUSS); DUMORTIFR, p. 195, pl. 43, fig. 6 (non Goldfuss sp.; non p. 308, pl. 62, figs. 3, 4.).
1875 Hinnites Lorioli sp. nov; Gemmellaro, p. 63. pl. 7, fig. 2.
1886d Hinnites velatus var. irgetws var, nov; DE GREG Orio, p. 20, pl. 13, figs. 1-6 (non Goldfuss sp.).
1888 Hinnites clathratus sp. nov; SCHLIPPE, p. 136, pl. 2, fig. 2.
1893 Hinnites Cornueli de Loriol; de Loriol and Lambert, p. 145, pl. 10, figs. 10, 11.
1893 Hinnites? spondyloides (ROEMER); DE LORIOL, p. 314, pl. 33, figs. 9, 10.

1893 Hinnttes? Lepidus sp. nov; DE LORIOL, p. 316, pl. 33, figs. 11, 12.
1898 Pecter (Velopecten) Sarthensis sp. nov; E. PHilIPPI, p. 602, pl. 19, fig. 1.

1905 Himmtes Comueli de Loriol; Peron, p. 239, pl. 10, fig. 11.
1905 Hinnites cf. spondyloides (ROEMER); PERON, p. 240, pl. 10, fig. 12.

1906 Eopecten tegulata (MORris and Lycett); CossMANN, p. 2, pl. 1, figs. 3-5.
1912 Eopecten Psyche (D'Orbigny); Dal Piaz, p. 247, pl. 2, figs. 1a, 1 b .
1915 Hinnites (Prospondylus) Ernii sp. nov; Rollier, pp. 448, 465, pl. 30, figs. 1-4.
1915 Hinnites (Prospondylus) oolithicus sp. nov; ROL LIER, p. 455.
1915 Himnites (Prospondylus) Morrisi sp. nov; Rollier, p. 455.

Hinnites (Prospondylus) Peroni sp. nov; ROlller, p. 460.

1915 Hinnites (Prospondylus) astartanus sp. nov; ROL LIER, p. 462.
1915 Himntes (Prospondylus) Aeberbardti sp. nov; ROLlier, p. 447, pl. 29, figs. 3, 4.
1923 Pecten (Velata) sp. nov; ERNST, p. 60, pl. 1, fig. 12.
1923 Eopecten tuberculosus (GoldFUSS); Lissajous, p. 157 (? Goldfuss sp.).

1926 Velopecten Gingensis (Quenstedt); Stafsche, p. 120.
v 1926 Velopecten Jason (D'OrbigNY); STAESCHE, p. 121, pl. 5, fig. 3, pl. 6, fig. 12.
v 1926 Velopecter spondylordes (ROemer); Staesche, p. 124 , pl. 6 , fig. 10.

1926 Velopecten velatus (Goldfuss); Arkell, p. 549, pl. 34, fig. 6 (non Goldfuss sp.).
v* 1931a Velata anglica sp. nov; Arkell, p. 120, pl. 9, figs. 1, 1a, 2.
1931a Velata wiltonienses sp. nov; Arkell, p. 123, pl. 9, figs. 3, 3a.
non 1936 Velata tuberculosa (GOLDFUSS); DECHASEAUX, p. 68, pl. 9, fig. 2.

1936 Velata Gingensis (QUenstedt); Dechaseaux, p. 68.

1936 Velata Cormueli (DE LORIOL); DECHASEAUX, p. 70.

1936 Velata fallax (DOLlfus); Dechaseaux, p. 71.
1948 Velata tegrlata (MOrris and Licett); COX and Arkell, p. 15.
1952 Eopecten tegulatus (MORris and Licett); COX, P. 29, pl. 3, figs. 5-7.

The type material of Avicula spondyloides ROEMER, 1836 , p. 87 , pl. 13, figs. $14 \mathrm{a}, \mathrm{I} 4 \mathrm{~b}$ is probably in the Roemer-Pelizaeus-Museum, Hildesheim, W. Germany. It was derived from the Oxfordian of N. Germany.

1. ORIGINAL D1AGNOS1S AND DESCRIPTION

'A. valva dextra oblique ovato-orbiculari fornicata 20-30 costulata, ala antica obsoleta postica depressa permagna costulata, costulis subnodulosis, sulcis interstitialibus linea ornatis.

Die allein vorliegende rechte Schale ist breit-eirund, fast kreisrund, hoch gewölbt und hinten durch starke Niederbiegung in einen großen Flügel übergehend. Die ganze Oberfläche ist mit 20 bis 30 scharfen, etwas knötigen Rippen bedeckt, in deren Z wischenräumen man eine deutliche Längslinie bemerkt. Der etwas zugespitzte Buckel liegt ziemlich in der Mitte.

Findet sich 12 bis 18 Linien groß im unteren Coral rag bei Heersum und im mittleren Coral Rag bei Hannover. Die Gat-
tungskennzeichen haben noch nicht genau untersucht werden können. ${ }^{\text {. }}$

2. AMENDED DIAGNOSIS

Distingusihed from E. velatus by the tendency, on the left valve, for intercalary costae to rapidly gain the same height as originals. Distinguished from E. abjectus by the similarity in height of the original costae.

Text fig. 142: Eopecten spondyloides - anterior hinge length/height.

3. AMENDED DESCRIPTION

Essentially very similar to E. velutus in its often irregular shape (e. g. Pl. 5, Fig. 10) and variable H/L and AH / H (text figs. 143, 142). The main difference lies in the radial ornament ol the left valve which consists of about 20 original costae which are continually added to by the intercalation of new costae (rapidly gaining the same height as originals) such that at $\mathrm{H}: 10$ there are between 22 (OUM J 34325) and 32 (YM 679) costae, at H: 20 between 30 (OUM J34325) and 48 (YM 679) costae, at $\mathrm{H}: 30$ between 40 (YM 442) and 56 (OUM J34325) costae, at H:50-60 over 100 costae (Arkfll, 1931a) and so on. The left valve of E. spondyloides also exhibits small, closely spaced imbricate lamellae on the costae unlike the left valve of E. velatus which bears only growth lines in addition to the costre.

The maximum height of E. spondyloides is 140 mm (Wablin, 1867).

4. DISCUSSION

As in E. velatus the extreme variability in shape and ornament of the species described in Section 3 has resulted in the proliferation of a vast number of specific names, in many cases based on a very small number of specimens. Those species which are, in the author's opinion, adequately characterised (by means of available types, clear illustrations or detailed descriptions) such that there can be no doubt as to their affinity
with the species described in Section 3, are placed in synonymy but not discussed, it being deemed of little value to attempt to describe individual variants. Secondary references to these species are only included in the synonymy where there can be no doubt as to their systematic position. Equivocal secondary references may be traced in Terquem and Jourdy (1869), df Loriol and Pfllat (1875), Sifmiradzki (1893), Cossmann (1900, 1907a, 1914, 1922), Paris and Richardson (1916), Lissajous (1923), Lanquine (1929), DeChaseaux (1936), J.-C. Fischer (1964) and Behmel and Geyer (1966).

Although the author has been unable to examine the holotype (M) of 'Avicula' spondyloides ROEMER there can be little doubt from the illustration that it is an example of the species described in Section 3. The holotype (M) of Spondylus tuberculosus Goldfuss (BSPHG AS ViI 640; Pl. 6, Fig. 1), a species erected in the same year as Roemer's, shows some resemblance to the species described in Section 3 but its rather coarse ornament and high convexity suggest that it is in fact an example of Eopecten abjectus. As the earliest specific name erected for an undoubted example of the species described above, 'A.' spondyloides is herein taken to be the senior synonym.

Quenstedt (1858; 'Pecten' tuberculosus Gingensis only) and Lissajous (1923) have used Guldfuss' specific name for examples of Eopecten spondyloides; 'Pecten' tuberculosus (Goldfuss); QUENSTEDT is representative of E. abjectus while 'Velata' tuberculosa (Goldfuss); Dechaseaux is apparently an example of Ctenostreon.

The frequent misapplication of the name velatus Goldfuss to E. spondyloides (see Synonymy) is discussed under E. vclatues and Morris and Lyeett's (1853) incorrect use of 'Hinnitcs' abjectus (Phullips) is discussed under E. abjectus.
'H.' ('Prospondylus') astartimus Roller should be rejected as a junior secondary homonym of ' H.' astartimus Greppin ($=$ E. velatus).

Text fig. 143: Eopecten spondyloides - height/length.

Although unfigured and inadequately described, Rolifer's (1915) species 'H.' ('Pr. ') oolithicus, 'H.' ('Pr.') Morrisi, 'H.' ('Pr.) Peroni and 'H.' ('Pr.') astartinus are based on specimens figured in respectively Morris and Lycett (1853, 1855), Peron (1905) and de Loriol and Lambert (1893) which are clearly referable to E. spondyloides.

5. STRATIGRAPHIC RANGE

Two rather poor specimens from the Sinemurian of Belgium (BM LL8605, LL8606) may be early representatives of E. spondyloides. The first certain records are however from the L. Toarcian when the species is recorded rarely from the Rhone basin (Dumortier, 1874). De Gregorio's (1886d) record from N. Haly may be from a similar horizon. U. Toarcian records are limited to a single specimen from N. W. Germany (Ernst, 1923) but in the Aalenian a number of specimens are known from France and England. E. spondyloides is quite common in the Bajocian and Bathonian but the only records from the Callovian are two specimens from France (MNO 3+02B, 3403) and seven from N. W. India (Cox, 1952). The species becomes common again in the Oxfordian but Kimmeridgian reports, although widespread, seem, where abundances are known, to be of very small numbers of specimens, e. g. in France, two from Le Havre (BM LL13478; ENSM L336, Pl. 6, Fig. 2), one from Montbéliard (Contejean, 1859) and one from La Rochelle (N. J. Morris Collection, BM). The species is reported to be common in the L. Tithonian of Sicily (Gemmellaro, 1875) and is known from the Tithonian of S. Germany (Stafsche, 1926) and Stramberg in Czechoslovakia (BM LL23888; Pl. 6, Fig. 4).

6. GEOGRAPHIC RANGE

E. spondyloides occurs widely in Europe (text fig. 144). Outside Europe, the only record is from the Callovian of N. W. India (see Section 5). This occurrence, matched with the rarity of the species in the Callovian of Europe, may signify an emigration, perhaps because of the widespread development of unfavourable argillaceous facies (see Section 8).

7. DESCRIPTION OF ECOLOGY

Although fairly widespread in the Aalenian E. spondyloides is notably rare in the chamositic oolites of the Northampton Sand 1 ronstone, in which E. abjectus frequently occurs. Only three specimens (BM 82394, L25732, unnumbered; the first attaining a height of 63 mm) are known from this horizon.
E. spondyloides is found at most levels in the Bajocian but is most common in the L. Bajocian Lincolnshire Limestone and the Sowerbyi-Banke of S. W. Germany (Staesche, 1926), where it reaches a maximum height of 140 mm (WaAGen, 1867). The sediments in the latter case are condensed marly oolites containing few ammonites but a diverse benthic fauna, mainly consisting of bivalves (including occasional examples of E. abjectus).

Many levels were colonised in the Bathonian (Cox and Ar_{R} KFLL, 19+8) but the species seems to be commonest in the L. Bathonian Minchinhampton Beds, grain supported oolites containing a diverse bivalve and gastropod fauna but very ferw ammonites (MOrris and Lycett, 1851-55). The maximum height attained is 49 mm (BM LL847). Two specimens (BM 65909,65913) are known from coral containing beds (Couches à Polypiers) in the Bathonian of Normandy.

In the Oxfordian E. spondyloides is quite common at most horizons and reaches a maximum height of 116 mm (OUM J8255). The author has collected numerous examples (reaching a maximum height of about 75 mm) from the Coral Rag (Transversarium zone) of Whitewall Corner Quarry near Malton, Yorkshire, where the species occurs in a tough porcellanous limestone crowded with corals (Thamnasteria, Rhabdophyllia, Thecosmilia and Stylina) and a reef-derived fauna including Ctenostreon, Lithophaga and the 'coarse' phenotype of Chlamys (Ch.) textoria together with the regular echinoid Cidaris (J. Wright, 1972). E. velatus is unknown. Similar facies characterise occurrences in the Unterer Korallenoolith (Plicatilis zone) of N. W. Germany (Roemer, 1836) and the Ringstead Coral Bed (Pseudocordata zone) in Dorset (BM 73077). However, in coral reef facies in the

Text fig. 14+: Eopecten spondyloides - European distribution.
U. Oxfordian of the Yonne where E. velatus is common, E. spondyloides appears to be rare.

In the Kimmeridgian the maximum height of 92 mm (ENSM L336) is attained in clay facies (Dollfus, 1863). However, the majority of reports seem to be from coralliferous deposits, e. g. the Tafel Jura (Contrfean, 1859), Haute-Marne (in Loriol et al., 1872) and Charente Maritime (N. J. Morras Collection, BM).
In reefal limestones in the L. Tithonian of Sicily (fauna p. 88) E. spondyloides is reported to be very common, reaching a maximum height ol 71 mm , while E. velatus appears to be comparatively rare (Gevimfllaro), 1975). tn similar facies in the U . Tithonian at Stramberg E. velatus seems to be common but only one definite specimen of E. spondyloides is known (BM LL23888; H: 46.5). StafsChe (1926) records the species from oolites (Brenztaloolith) of the same age in S. Germany which pass laterally into coral/Diceras facies (Arketl, 1956).
E. spondyloides is rare in argillaceous deposits at all times. Only two specimens (BMLL13478, ENSM L336) are known from the Kimmeridge Clay and two from the Oxford Clay (SM J264t0, J6t+1). Duviortifr (1874) records only rare specimens from L. Toarcian clays in the Rhone. Of these a high proportion are said to bear xenomorphic ornament derived from ammonites. The only records from the M. and U. Jurassic of the peri-Mediterranean area, where sedimentation was predominantly pelagic, are from N. Italy (DE GrfGORIU, 1886d, Dal PIA, 1912) where a guyot was probably in existence.
The great majority of museum specimens of E. spondyloides are left valves.

8. INTERPRETATION OF ECOLOGY

The usual occurrence of E spondyloides in oolitic and reefal limestones indicates a preference for high energy conditions. Absence of the species from L. Bajocian reets in the E. Paris Basin (Hat la4, 1975b), presence of a lew specimens in Bathonian coralliferous deposits and relative abundance in U. Jurassic coral reefs suggests an evolutionary change in the favoured habitat from level bottom oolites to upstanding reefs. In this connection it should, however, be noted that Spondylopecten species, which are frequently reef-associated, are absent from the L. Bajocian structures and this may indicate that the lack of E. spondyloides is due to some unfavourable feature of these reefs (e. g. dense structure, see p. 89) rather than a preference for contemporaneous oolites. Furthermore, the widespread occurrence of E. spondyloides in the Oxfordian of England and the typically small size and localised distribution of coral reets suggests that at least some records bear no relation to the existence of reefs. Moreover, the virtual restriction of the species to reef and reef-derived sediments in the U. Jurassic of continental furope may simply be a result of the general development of unfavourable low energy, argillaceous facies elsewhere. Epifaunal bivalves probably afforded suitable attachment sites in level bottom environments and the abundance of E. spondyloides in reefs could be more a consequence of the abundance of bivalves rather than of a direct relationship with corals. The evolution-
ary trend suggested above may therefore be more apparent than real.

Although a high proportion of the relatively few examples of E. spondyloides from the L. Toarcian of the Rhone show evidence of having been attached to ammonites, the abundance of the species in deposits in which ammonites are rare and the fact that only two other specimens (YM $4+2$ from the Inferior Oolite of Dorset, GPIT from the Bajocian/Bathonian of S. Germany) with ammonite-derived xenomorphic ornament are known, indicates that ammonites did not provide ideal attachment sites but constituted a considerably less favourable alternative to bivalves. By analogy with E. velatus it is probable that ammonites were only used for attachment when they had sunk to the sea floor after death.

The inverse relationship between the numbers of E. spondyloides and E. velatus in U. Jurassic reefs is good evidence for competition. The dominent species at any one locality was presumably determined by priority. A similar reaction seems to have occurred between E. spondyloides and E. abjectus in M. Jurassic oolites.

There is no obvious relationship between size and facies in E. spondyloides. fts usual occurrence, in moderate numbers with a high diversity fauna, suggests that it was an equilibrium species (Levinton, 1970).

9. FUNCTIONAI MORPHOLOGY

Since in all important morphological respects E. spondyloides is identical to E. velatus the interpretation of functional morphology offered for the latter will serve here.

10. ORłGINS AND EVOLUTION

The most likely ancestor for E. spondyloides is E. velatus. A large ($\mathrm{H}: 75$) specimen of the latter (Pl. 5, Fig. 8) exhibits, in late ontogeny, ornament which closely resembles that of the early ontogeny of E. spondyloides. Thus trans-specific evolution could have occurred by the relatively 'simple' process (Gouls, 1977) of the acceleration (recapitulation) of the development of ornament with respect to size.

There are no directional changes in morphology within E. spondylordes. Maximum height oscillates from 63 mm (Aalearian) to 140 mm (Bajocian) to 49 mm (Bathonian) to 55 mm (Callovian, Macrocephalus zone; Cox, 1952) to 116 mm (Oxfordian) to 92 mm (Kimmeridgian) to 71 mm (Tithonian). The Callovian value is derived from a rather small sample so it is likely that the maximum height recorded in the stage will be increased on further collecting.

Eopectern abjectus (Philups 1829)

Pl. 6, Figs. 3, 5, 6, 8, 9, ?Fig. 1; text fig. 145

Synonymy

1829 Pecten abjectus sp. nov; Phillips, pl. 9, fig. 37.
1835 Pecten abjectus Phillips; Phillips, pl. 9, fig. 37.
$\mathrm{pv}^{\text {*s? }} 1836$ Spondylus tuberculosws sp. nov; Goldfuss, p. 93, pl. 105, figs. 2a, 2b.
1855 Hennites abjectus (PHILLIPS); MORRIS and LyCETT, p. 125 , pl. 9 , fig. 7 (non pl. 14, fig. 3).
non 1858 Pecten tuberculosus Gingensis subsp. nov; Quen. STEDT, p. 379 , pl. 51, fig. 4 (?GOLDFUSS sp.).

1910 Eopecten gradus (BEAN); LisSAJOUS, p. 351.

1910 Eopecten abjectus (Phillips); Lissajous, p. 351, pl. 9, fig. 14.
1916 Eopecten abjectus (Phillips); Paris and Richard SON, p. 530.
1923 Eopecten Gradus (BEAN); Lissajous, p. 157.
non 1923 Eopecten tuberculosus (GOLDFUSS); LissAjOUS, p. 157 (?GoldFuss sp.).

1926 Velopecten abjectus (Phillips); Staesche, p. 119.
1936 Velata abjecta (Phillips); Dechaseaux, p. 68.
1936 Velata gradus (BEAN); DECHASEAUX, p. 69.
1948 Velata gradus (Bean); COX and Arkell, p. 15.
No trace of the type material of Pecten abjectus Phillips 1829 , pl. 9 , fig. 37 has yet been found despite considerable searching in e. g. the Phillips Collections at OUM and YM. The figured specimen was said by Phillifs to be from the Yorkshire Gt. Oolite (Bathonian). This seems unlikely in view of the non-marine facies; a Bajocian or Aalenian age is more probable.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

None given.

2. DIAGNOSIS

Distinguished from E. spondyloides by the tendency for two median costae to be considerably larger and bear tubercles. Distinguished from E. velatus by the tendency for intercalary costae to rapidly gain the same height as original costae.

3. DESCRIPTION

Essentially very similar to E. spondyloides apart from the diagnostic features. The number of costae on the left valve is
however usually much smatler (e. g. 40 at $\mathrm{H}: 53.5$, OUM J2291) at equivalent size, and convexity, although very variable, is usually much higher ($\mathrm{C}_{\mathrm{L}}: 21.5$ at $\mathrm{H}: 58, \mathrm{BM} 70686$). The maximum height is 127.5 mm (GPIT).

4. DISCUSSION

Phillips' (1829) figure of 'Pecten' abjecties in the first edition of Geology of Yorkshire is a poor illustration of a coarsely ornamented Eopecten. There is little sign of the larger tubercle-bearing costae diagnostic of the species described in Section 3. The figure in the second edition (1835), while undoubtedly of the same specimen, is considerably clearer and yields a costal count of 36 at $\mathrm{H}: 37$. This is a reasonable value for the species described in Section 3 and well below the lower limit of variation in E. spondyloides, the only species with which there is any possibility of confusion. The original specimen seems to have been lost (see above) but in the light of the above evidence it can be assumed to have been a variant of the species described in Section 3 with relatively undeveloped median costae. The majority of subsequent usage of Phlllips' specific name (see Synonymy) has been for representatives of the species described in Section 3 thus there would be good grounds for designating as neotype a typical example of this species.

One of the figures (pl. 14, fig. 3) of 'H.' abjectus in Mor RIS and LyCett (1855) depicts a specimen with the more numerous and regular costae characteristic of E. spondyloides.

Lissajous (1910) states that the specific name gradus Bean dates from the latter's paper in Ann. Mag. Nat. Hist. (1839). However, there is no reference to the species in this paper and the earliest reference to it would therefore appear to be in Lycett (1863), where a specimen which clearly belongs to E. abjectus, is described and figured as ' P.' gradus Bean.
'Spondylus' tuberculosus Goldfuss and secondary usages of this specific name are discussed under E. spondyloides.

Inadequately characterised secondary references to synonymous species are excluded from the synonymy because of the possibility of misapplication to E. spondyloides.

Text fig. 145: Eopecten abjectus - European distribution.

They may be traced in Oppel (1858), Rothpletz (1886), Schlippe (1888), Kilian and Guebhard (1905), Hennig (1924), Lanquine (1929), Parent (1940), Channon (1950) and J.-C. Fischer (1969).

5. STRATIGRAPHIC RANGE

A single specimen from the U. Pliensbachian of Yorkshire (BM 47353; Pl. 6, Fig. 9) is the earliest record of E. abjectus. Thereafter the species is unknown until the Aalenian when it becomes locally quite common, continuing thus until the U. Bajocian. Unequivocal Bathonian records (Morris and Lycftt, 1855; de Loriol and Schardt, 1883; Lissajous, 1923; Staesche, 1926; Dechaseaux, 1936; Cox and Arkiell, 1948) are fairly widespread in Europe but the species does not appear to be common anywhere. Callovian records are limited to a single specimen from the Macrocephalus zone of Scarborough (LYCETT, 1863) and unfigured and therefore questionable specimens (see Section 4) from the Maritime Alps (Kilian and Guébhard, I905). Morris and Lycett's (1855) record from the 'Coralline Oolite of Malton' (Oxfordian) is unsupported by a figure of a specimen from this horizon.

6. GEOGRAPHIC RANGE

The distribution of E. abjectus in Europe (text fig. 145) is largely dependent on the occurrence of the appropriate sedimentary Iacies (see Section 8). The only records Irom outside Europe are a single specimen from the U . Bathonian of N. W. India (BM L75269) and unfigured and therefore questionable specimens (see Section 4) from the 'Lower Dogger' of Tanzania (Hennig, 1924).

7. DESCRIPTION OF ECOLOGY

E. abjectus first occurs commonly in the Northampton Sand Ironstone (Opalinum zone), a condensed chamosite oolite containing few examples of E. spondyloides but an otherwise abundant and diverse fauna. The maximum height attained is 95 mm (BM 82385). E. abjectus is markedly less common in the Sowerbyi-Banke, a somewhat similar condensed, ferruginous, marly oolite containing numerous examples of E. spondyloides, in the L. Bajocian of S. W. Germany. Maximum height (127.5 mm , GPIT) is however considerably greater.

Lissajous (1923) reports the species to be common in ferruginous oolites of the Parkinsoni zone (U. Bajocian) in the Mâconnais. E. spondyloides appears only to occur in the Toarcian and Bathonian in the same area. In the U. Bajocian of Swabia E. abjectus reaches a maximum height of 75 mm (GPIT).

It is clear from the foregoing that condensed ferruginous oolites constituted the most favourable substrate for E. $a b$ jectus. The species is not known to be common outside this facies. Paris and Richardson (1916) report the species to be common in the Pea Grit (Murchisonae zone), a pisomicrite in the Cotswolds, but this is not reflected in museum collections or supported by the present author's field observations.

8. INTERPRETATION OF ECOLOGY

The usual occurrence of E. abjectus, in condensed ferruginous oolites, indicates a preference for high energy conditions with minimal terrigenous input. The inverse correlation in numbers of E. abjectus and E. spondyloides in such facies is strongly suggestive of competition, with dominance at any one locality being presumably determined by priority.

The characteristic field occurrence of E. abjectus, in moderate numbers with a high diversity fauna, suggests that it was an equilibrium species (Levinton, 1970).

9. FUNCTIONAL MORPHOLOGY

Since the species are in all important respects identical, the interpretation of functional morphology presented for E. velatus is of equal relevance to E. abjectirs. It is extremely doubtful whether the coarser ornament of the latter conferred any useful additional strength and stiffness on the shell which, being thick, must already have been robust enough to cope with most eventualities. The coarser ornament is more probably a non-functional by-product of neoteny in the origin of the species (see Section 10).

No specimens of E. abjectus bearing the xenomorphic ornament of ammonites have been discovered. It therefore seems likely that benthos provided the sole source of sites for byssal attachment.

10. ORIGIN AND EVOLUTION

On the basis of morphology the most likely ancestor for E. ubjectus is E. spondyloides. However, validation of this hypothesis of derivation must await the discovery of undoubted specimens of E. spondyloides from the L. Lias (see Section 5). Since the relatively coarse ornament of E. abjectus resembles the juvenile ornament of E. spondyloides it is possible that trans-specific evolution involved the retardation of ornamental development with respect to size (neoteny). There is however no basis of allometry in E. spondyloides to allow derivation of the large tuberculate median costae in E. abjectus by heterochrony. Speciation therefore probably involved changes in the structural as well as the regulatory genome.
There appear to be no phyletic changes in morphology within E. abjectus. Maximum height shows no directional change in the passage from Aalenian (95 mm) to L. Bajocian (127.5 mm) to 75 mm (U. Bajocian).

A possibility of neoteny in the origin of E. abjectus together with the subsequent highly developed stenotopy is indicative of the prevalence of ' K ' selection (Gould, 1977).
The Bathonian decline of E. abjectus was probably the result of the diminution in areal importance of ferruginous oolite deposits. The subsequent extinction of the species in the Callovian was probably due to the widespread development of unfavourable (low energy/high turbidity) argillaceous facies in Europe.

Genus CHLAMYS RODiNG 1798 (non Koch 1801)

Type species. SD; Herrviavnsfv 1847, p. 231 ; Pecten islundicus Muleer 1776, p. 248; Recent, circumboreal.

AMENDED DIAGNOSIS

'Higher than long or rounded, commonly somewhat oblique, LV usually more convex but in some species valves nearly equally convex; auricles clearly delimited, usually large; byssal notch large; ctenolium usually present; sculpture of radial (usually stronger) and concentric elements, with scalelike spines commonly developed at their junctions, especially on LV but some shells nearly smooth; interspaces of many forms with intercalaries in adult; margin usually scalloped; cardinal crura variable in number and size. Trias. Rec., cosmop.' (Hertlein, 1969: N355).

DISCUSSION

The above diagnosis includes such a diversity of forms that it seems impractical to employ it at the generic level. However, the present author is not in a position to give a revised generic diagnosis of Cblamys since most species are postJurassic.

Subgenus CHLAMYS s.s.

(Synonyms etc. Clamys Leach, 1815 [nom. null.]
Chalmys Dollfus and Dautzenberg, 1886 [nom. null.]
Actinochlamys Rovereto, 1898
Myochlamys von Ihering, 1907 [obj.]
Chlamydina Cossmann, 1907 [obj.]
Zygochlamys von Ihering, 1907
Belchlamys IREDAIE, 1929
Minachlamys Iredaie, 1929
Scaeochlamys Iredale, 1929
Talochlamys Iredale, 1929
Veprichlamys IRedale, 1929
Coralichlanys IREDALE, 1939)

AMENDED DIAGNOS1S

'Usually higher than long, anterior auricle longer than posterior one; sculpture of numerous, generally grooved or striated and spinose, radial ribs; inner margin commonly with rounded, grooved, weak riblets; cardinal crura weak or nearly obsolete. Trias. - Rec., cosmop.' (Hertlein, 1969: N355).

DISCUSSION

Forms referable herein to Ch . (Chlamvs) are divisible into 3 groups on the following basis: -

1. Plicae smooth ($=$ Ch. (Ch.) valoniensis).
2. Plicae bearing widely spaced spines up to 5 mm in length (=Ch. (Ch.) pollux).
3. Plicae bearing variably spaced imbricate lamellae ($=$ Cb. (Ch.) textoria).
Groups 1 and 2 are almost certainly directly related and can be distinguished from Group 3 at least as far back as the Trias.

They may therefore be worthy of a subgeneric distinction from Group 3. However, in view of the uncertainty over the bounds of the genus Chlamys (see above) this seems an inopportune moment to risk further confusion of the taxonomy by erecting new subgenera.

Forms referable to Group 3 are to all intents and purposes continuously variable in the number of plicae, spacing of the comarginal lamellae and umbonal angle (Pl. 6, Figs. 10-12, Pl. 7, Figs. 1-23, Pl. 8, Figs. 1-3, 5-20). In all other respects they are relatively invariant. However variation, at least in the number of plicae, is not normally distributed. Plical frequency histograms standardised for size (in order to eliminate the effect of ontogenetic increase in the number of plicae) show at L: 20 and L: 40 (text fig. 146) a pronounced skew to the right together with the development of secondary modes, while at L: 60 (text fig. 146) there is marked bimodality. At all sizes there are a few specimens whose plical Irequencies are outside the range of continuous variation. This is hardly the pattern of variation expected of a single species but the following discussion is intended to show that it need not necessarily imply that more are present. In any case the height of the in-ter-modal troughs would make for difficulty in defining the boundaries between constituent species.

If a species is 'environmentally variable' (developmentally flexible) character/frequency plots for early stages in ontogeny would be expected to lack prominent modes since at this stage the organisms concerned cannot have 'experienced' the environment and started to develop the appropriate morphology (Jounson, 1981). For any given environment a single, prominent mode will emerge as development proceeds. However, if more than one environment is involved a whole variety of character/frequency distributions is possible for later stages in ontogeny (such as are represented in text fig. 146): differences in the extent of representation of particular environments, resulting from uneven sampling, will determine the shape of the character/frequency distribution.

In the group under discussion there is a considerable correlation between plical frequency in the later stages of ontogeny and the environment occupied. Forms within the range 17-26 plicae are usually derived from reefal or peri-reefal deposits while those within the range 27-36 plicae are most frequent in non-reef, shallow water facies and those with more than 36 plicae are usually derived from argillaceous sediments (see pp. 175-177). Due to abrasion, it is often difficult to count the number of plicae in the umbonal region (earliest ontogenetic stages). There does seem in fact to be a mode at about 22 plicae (range: 17-30) but there is nevertheless little sign of the multiple modes evident in counts from later ontogenetic stages. There are thus reasonable grounds for considering that differences in the number of plicae late in ontogeny are a reflection of ecophenotypic variation within a single species. There is still a need for further detailed work on early ontogenetic variation in order to substantiate the 'single species' hypothesis. An analysis of ontogenetic changes in variation along the lines employed for Radulopecten vagans (Johnson, 1981) would provide a test for ecoplzenotypic variation.

In conclusion, the curious patterns of variation shown by text fig. 146 are herein considered to be an artefact of the museum collections studied. In these, specimens derived from reefal and peri-reefal facies are much the most abundant

Text fig. 146: Chlamys (Ch.) textoria - frequency distributions for numbers of plicae at lengths of 20, 40 and 60 mm .
and thus contribute to the right-skew at L: 20 and L: 40. Specimens from argillaceous facies are poorly represented and usually small, thus resulting in the discontinuous distribution at high plical counts, which becomes especially marked at L: 60. Specimens from non-reef shallow water facies are poorly represented but often large, thus resulting in the paucity of specimens with intermediate plical counts at $\mathrm{L}: 20$ and $\mathrm{L}: 40$ but the relative abundance at $\mathrm{L}: 60$.

Variation in the number of plicae at a particular size could result from flexibility in the absolute rate of either size increase or of addition to the number of plicae. Some evidence for retardation of size increase (stunting) is derived from the fact that forms with more than 36 plicae rarely exceed 50 mm in height. The generally closer spacing of the imbricate lamellae in such forms is also indicative of size retardation, provided that the temporal periodicity of secretion is the same as
in larger specimens. Likewise, the generally smatler H/UA ratio of specimens with numerous plicae is indicative of retarded size development, provided that H and UA are partially dissociated. However, the existence of specimens which are both large and bear numerous plicae (e. g. Pl. S, Fig. 19) should be noted. Moreover, there is by no means a linear relationship between the number of plicae and spacing of the imbricate lamellae, morphs of intermediate plical count exhibiting both close and widely spaced lamellae (e. g. Pl. 8, Figs. 9, 12). Similarly, in a plot of H/UA (text fig. 147) morphs with between 27 and 36 plicae at a standard size (L: 40) do not occupy a clearly defined zone between those with more and less plicae.

The existence of forms with low plical counts, even at very large size (e. g. Pl. 6, Fig. 12), together with the fact that much of the intercalation leading to high plical counts takes place quite early in ontogeny (e. g. Pl. 8, Fig. 16) suggests that changes in the absolute rate of addition to the number of plicae have played at least as important a role as stunting in promoting the observed pattern of ecophenotypic variation. Such changes, unlike stunting, imply some adaptive value for the phenotypes adopted in each environment. At present only a few suggestions (see p. 178) can be offered as to their significance and the topic is clearly ripe for further research.

Text fig. 147: Cblamys (Ch.) textoria - height/umbonal angle for forms with either 17-26, 27-36 or 37-46 plicae at a length of 40 mm .

The decision to incorporate the great range of variation of Group 3 within the bounds of a single species is not rendered suspect by the lack of a Recent analogue. In one of the few cases where the variation of a Recent pectinid has been assessed in a number of ecological settings, Beu(1966) reports that Ch. dieffenbachi adopts an ecophenotype consisting of numerous spine-bearing plicae when enclosed within a sponge (the usual habitat) while an ecophenotype consisting of relatively few, smooth plicae is adopted in the unenclosed condition. The total range of variation in the later stages of ontogeny is comparable to that in Group 3 and the early stages of ontogeny are similarly relatively invariant.

Chlamys (Chlamys) textoria (Schlotheim 1820)
Pl. 6, Figs. 10-12, Pl. 7, Figs. 1-21, Pl. 8, Figs. 1-3. 5-20,
?Fig. 4; text figs. 146-157

Synonymy

$\mathrm{v}^{*} 1820$ Pectinites textorius sp. nov; SCHLOTHEIM, p. 229.
1822 Pecten varius Linnafus; Young and Bird, p. 223, pl. 9, fig. 9 (non Linnafus sp.).
v*1826a Pecten vimineus sp. nov; J. DE C. SOWERBY, p. 81, pl. 543, figs. 1, 2.
1828 Pecten elegans sp. nov; Young and Bird, p. 234, pl. 9, fig. 8.
1829 Pecten virguliferus sp. nov; Phillips, pl. 11, fig. 20.
? 1833 Pecten textilis sp. nov; Munster in Goldfuss, p. 43, pl. 89, figs. 3a-d.
v 1833 Pecten vimineus J. DE C. Sowerby; Goldfuss, p. 44, pl. 89, figs. 7a, 7b.
v 1833 Pecten textorius (SCHLOTHEMM); GOLDFUSS, p. 45, pl. 89, figs. 9a-d.
?v* 1833 Pecten texturatus sp. nov; MUNSTER in GOLDFUSS, p. 45, pl. 90 , fig. 1.
$v^{* *} 1833$ Pecten ambiguus sp. nov; MUNSTER in Goldfuss, p. 46, pl. 90, figs. 5a, 5b.
v 1833 Pecten articulatus (SCHLOTHEIM); GOLDFUSS, p. 47, pl. 90, fig. 10 (non SChlOTHEIM sp.).
v* 1833 Pecten subtextorus sp. nov; MUNSTER in GOLDFUSS, p. 48, pl. 90, figs. 11a, 11 b.
1836 Pecten subimbricatus sp. nov; ROEMER, p. 212, pl. 13, fig. 6.
Pecten textorius var. orbicularas var. nov; KOCH and Dunker, p. 20, pl. 1, fig. 5.
(?) 1839 Pecten dextilis MUNSTER; Roemer, p. 28, pl. 28, figs. 24a-c.
Pecten vimineus J. de C. Sowerby; Roemer, p. 29.
v*p 1850 Pecten Palaemon sp. nov; D'Orbigny, v. 1, p. 238 (BOULE, 1908, v. 3, p. 37, pl. 18, fig. 5, non fig. 6).
v * 1850 Pecten Phillis sp. nov; D'Orbigny; v. 1, p. 257.
v 1850 Pecten articulatus (SCHiOTHFIM); D'OrbigNY, v. 1, p. 285 (non Schlotheim sp.).
v* 1850 Pecten Luciensis sp. nov; D'Orbigny, v. 1, p. 314 (Boule, 1912, v. 7, p. 91, pl. 2, fig. 28).
v* 1850 Pecterl Camillus sp. nov; D'Orbigni, v. 1, p. 342 (BOULE, 1925, v. 14, p. 160, pl. 20, figs. 7-10).
v 1850 Pecten vimineus J. DE C. Sowerby; D'Orbigny; v. 1, p. 373.
v* 1850 Pecten Opis sp. nov; D'Orbigny, v. 1, p. 374 (Boule, 1928, v. 17, p. 49, pl. 6, figs. 10, 11).
$\mathrm{v}^{*} 1850$ Pecten subarticulatus sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 1S, p. 171, pl. 19, figs. 13, 14).
v: 1850 Pecten Nisus sp. nov; D’Orbignt, v. 2, p. 22 (BOUlE, 1929, v. 18, p. 172, pl. 20, fig. 2).
1850 Pecten Nothus sp. nov; D'Orbigny, v. 2, p. 22 (Boule, 1929, v. 18, p. 173, pl. 20, fig. 3).
v* 1850 Pecten Niso sp. nov; D'Orbigny', v. 2, p. 22 (Boule, 1929, v. 18, p. 173, pl. 20, fig. 4).
1851 Pecten ambiguus MUNSTER; SCHAFHAUTL, p. 410.
1852 Pecten textorius (SChlotheim); Verneuil and Collomb, p. 112.
1853 Pecten textorius (SCHLotheim); Chapuis and DE Walque, p. 209, pl. 23, fig. 2.
1853 Pecten articulatus (SCHLOTHEIM); CHAPUIS and Dewalque, p. 212, pl. 29, fig. 3 (non SchlotHEIM sp.).
1853 Pecten articulatus (SCHLOTHEIM); MORRIS and LyCett, p. 32, pl. 33, fig. 12 (non Schlotheim sp.).
y* 1855 Pecten icaunensis sp. nov; COTTEAU, p. 110.

v 1855	Pecten desmonlunsamits sp. nov; COtteau, p. 112.	1867	Pecten textorlus (SChlotheim); Dumortier, pp. 71, 125, pl. 13, lig. 1.
1855	Pecten textu'atus Monster; Terquem, p. 322.	1868	Pecten textorius (SChlotheim); Jaubert, p. 235.
? 1855	Pecten dispar sp. nov; Tirquem, p. 323, pl. 23, fig. 6	1869	Pecten textorlus (Schlotheim); Dumortier, p. 139, pl. 22, fig. 2, p. 303, pl. 39, figs. 1, 2.
$\begin{aligned} & ? 1858 \\ & 1858 \end{aligned}$	Pecten Trigeri sp. nov; Oppel, p. 103. Pecten Dewalques sp. nov; OPPEL, p. 420.	1869	Pecten Rollei Stoliczka; Dumortier, p. 139, pl. 22, fig. 1.
p ${ }^{1858}$	Pecten textorms (Schlotheim); Quenstedt, p. 78, pl. 9, fig. 12, p. 500, pl. 67, fig. 5, p. 794, pl. 98 , fig. 3.	1869 1869	Pecten Fortunatus sp. nov; Dumortier, p. 140, pl. 22, fig. 4. Pecten semispinatus sp. nov; Terquem and
1858	Pecten textorms γ var. nov; QUENSTEDT, p. 147, pl. 18, fig. 17.	1872	JOURDY, p. 130, pl. 13, figs. 21, 22. Pecten Nisus d'Orbigny; de Loriol et al., p. 385,
1858	Pecten textorius tornlosz subsp. nov; QUENSTEDT, p. 311 , pl. 42, fig. 10.	1874	Pecten Ponzii sp. nov; Gemalellaro, p. 107,
v* 1858	Pecten textorms albus subsp. nov; QUENSTEDT, p. 627, pl. 77, figs. 25, 26.	1874	pl. 13, fig. 5. Pecten anastomoplicus sp. nov; Gemmellaro and
, 1858	Pecten dentatus J. De C. Sowerby; Quenstedt, p. 753 , pl. 92 , fig. 3 (non J. DE. C. Sowerbl sp.).	1874	Di Blas1, p. 99, pl. 1, figs. +-7. Pecten eectensis sp. nov; Gfmmellaro and Di
v 1858	Pecten articulatus (SChlotheim); Quenstedt, p. 754 , pl. 92, fig. 11 (non Schlotheim sp.).	1874	Blasi, p. 102, pl. 1, figs. 8-10. Pecten textorius (Schlotheim); Dumortier,
1858	Pecten subtextoruts MUNSTER; Quenstedt, p. 754, pl. 92, fig. 4.	1875	pp. 193, 310, pl. 44, fig. 12. Pecten vimmeus J. DF C. Sowerby; de Loriol
v* 1858	Pecten subtextorius Schnaitheimensis subsp. nov; Quenstedt, p. 754, pl. 92, fig. 7.	v: 1875	and Pellat, p. 204, pl. 23, figs. 3-5. Pccten Quenstedti sp. nov; Blakf, p. 231.
1859	Pecten Benedictl sp. nov; CONTEJEAN, p. 313. pl. 23, figs. 13-15.	1878	Pecten (Chlamys) Veneris sp. nov; Gemmellaro and Di Blasi in Gemmfllaro, p. 396, pl. 30,
1859	Pecten Billotz sp. nov; CONTEJEAN, p. 315, pl. 23, figs. 22-24.	1878	figs. 11, 12. Pecten sibtextorms Munster; De Loriol, p. 161,
1860	Pecten virguliferus Phillips; Coquand, p. 68.		pl. 23, figs. 1,2.
1860	Pectentimineus J. de C. Sowerby; Coquand, p. 73.	? 1878	Pecten Janiformis sp. nov; Lunidgren, p. 39, pl. 1, figs. 58, 59.
1860	Pecten subarticulatus d'Orbigny; Coquand, p. 79.	1879	Pecten of. textorius (SChlotheim); Neumayr, p. 14.
1860	Pecten Nisus d'Orbigny; COQUAND, p. 79.	1879	Pecten Lotharngicus sp. nov; Branco, p. 111, pl. 8, fig. 9.
$\begin{aligned} & 1860 \\ & 1860 \end{aligned}$	Pecten Niso d'Orbigny; COQUAND, p. 79. Pecterl Billoti Contejean; Coouand, p. 91	1881	Pecten subreticulatus Stoliczia; J. Meneghini,
1861	Pecten subtextorius Munster; Trautschold, p. 446.	1881a	$\text { p. } 162 \text {, pl. } 28 \text {, figs. } 13,14 .$ Pecten aff. viminews J. de C. Sowerby; Boehm,
1861	Pecten subreticulatus sp. nov; STOLICZRA, p. 196, pl. 6, figs. 1, 2.	v*1881a	p. 183, pl. 40, figs. 3a, 3b. Pecten paraphoros sp. nov; BOEHM, p. 183, pl. 40, fig. 7
1861	Pecten Rollei sp. nov; Stoliczka, p. 197, pl. 6, figs. 5, 6 .	1883	fig. 7. Pecten of. vimmeus J. de C. Sowerby; Lahusen,
1861	Pecten verticallus sp. nov; StoliczkA, p. 197, pl. 6, figs. 3, 4.	1883	p. 23, pl. 1, fig. 17. Pecten n. sp.; BOEHM, p. 614, pl. 67, figs. 36-38.
1861	Pectert palosus sp. nov; Stoliczka, p. 197, pl. 6, fig 8	- 1883	Pecten aff. vimmens J. de C. Sowfrby; Boehm, p. 615, pl. 68, figs. 1-4.
1862	Pectenarticulatus (Schlothemm); Thurmann and Etallon, p. 255, pl. 36, fig. 2 (non SChlotheim	1883	Pecten cf. viminens J. de C. Sowerby; Lahusen, p. 23, pl. 1, fig. 17.
	sp.).	1886	Pecten cf. textorims (SChlotheim); SaCCO, p. 25.
1862	Pecten Schnaitheimensis Quenstadt; Thurmann and Étallon, p. 255, pl. 36, fig. 3.	v-1886	Pecten lachnarius sp. nov; Rothlietz, p. 169, pl. 14, figs. 18, 18a, 20.
1862	Pecten subtextorms Munster; Thurmann and Etalion, p. 256, pl. 36, fig. 4.	v 1888	Pecten ambiguus MUNSTER; SChlippe, p. 129, pl. 2, fig. 9.
1862	Pecten vimincus J. de C. Sowerby; Thurmann	1888	Pecten Dewalquei Oppel; SCHi IPPLe, p. 130, pl. 2, fig. 10.
1862	Pecten Herminclac sp. nov; Etallon in TifurMANN and Etallon, p. 256, pl. 36, fig. 6.	1892	Pecten (Chlamys) Rollei Stoluczka; Parona, p. 14, pl. 1, fig. 3.
1863	Pecten textorihs (SChlothelm); Schlonbach,	1893	Chlamys (Pecten) stibtextoria (MUnster); SiemirADZKi, p. 118.
1863	$\begin{aligned} & \text { P. } 543 . \\ & \text { Pecten splendens } 4 \text { p. nov; Dollfus, p. } 78 \text {, pl. 14, } \end{aligned}$	1893	Pecten Dewalquei var. Jurensis var. nov; Riche, p. 97, pl. 1, figs. 17, 18.
1864	Figs. 7-9. Pecten sechrts sp. nov; 1)umortier, p. 68, pl. 8,	v 1893	Pecten pelops sp. nov; de LORIOI in DE LORIOI and Lambert, p. 144, pl. 10, fig. 7.
1864	figs. 9-11. Pecten viminetu J. de C. Sowerby; V. Seebach,	1893	Pecten subarticulatus D'OrbigNY; DE LORIOL, p. 303, pl. 32, figs. 16, 17.
1865	p. 97. Pecten cansliculatus sp. nov; Terquem and PIETTF, f. 102, pl. 11, figs. 30-32.	1893 1894	Pecten Ferax sp. nov; de Loriol, p. 308, pl. 33, fig. 1. Pecten textorius (SChlotheim); MOricke, p. 37.
(?) 1865	Pecten dispar Terquem; Terquem and Piette, p. 103.	v* 1894	Pecten: episcopalis sp. nov; DF Loriol, p. 50, pl. 6, figs. 1, 2.
1866	Pecten Sismondae sp. nov; Capellini, p. 481, pl. 6, figs. 4-6.	1894	Pecten cfr. nattbeimensis sp. nov; DF Lorior, p. 52, pl. 6, figs. 4-6.

1894 Pecten bipartitus sp. nov; Futterer, p. 32, pl. 5, figs. 4, 4a.
1895 Pecten Guyoti sp. nov; DE LORIOL, p. 42, pl. 10, fig. 2.
1897 Pecten textorius (SCHLOTHE1M); POMPECK], p. 773.
1898 Pecten (Chlamys) silanus sp. nov; Greco, p. 111, pl. 8, figs. 34, 35.
1898 Pecten articulatus (SChlotheim); Greprin, p. 128 (non Schlotheim sp.).
non 1903 Pecten (Chlamys) dispar Terquim; Bistram, p. 36, pl. 3, fig. 3.

1903 Pecten textorus (SCHIOTHFIM); Burckhardt, p. 7.

1903 Pecten moravicus sp. nov; Remes, p. 203, pl. 19, figs. 9a, 9b.
1903 Pecten strambergensis sp. nov; Remes, p. 204, pl. 19, figs. 10a-c.
v* 1904 Pecten (Chlamys) Etiveyensis sp. nov; DE LORIOL, p. 221, pl. 24, fig. 1.

1904 Pecten (Chlamys) episcopalis DE LORIOL; DE LOR 1OL, p. 223, pl. 24, fig. 7.
1904 Pecten (Chlamys) blyensis sp. nov; DE LORIOL, p. 224, pl. 24, fig. 3 .

1904 Pecten (Chlamys) Bourgeati sp. nov; DE LORIOL, p. 225, pl. 24, figs. 5, 6.
(?) 1904 Chlamys cf. dispar (Terquem); CossmanN, p. 504.

1905 Pecten (Cblamys) Dewalquet Oppfl; Kilian and Guébhard, p. 743.
1905 Pecten (Chlamys) voisin de Nattheimenses DE LORiol; Kllian and Guébhard, p. 817.
1905 Pecten (Chlamys) vimincus J. DE C. Sowerby; Kilian and Guebhard, p. 817.
v 1905 Pecten shbarticulatus D'Orbigny; Peron, p. 217, pl. 10. fig. 2.
v 1905 Pecten vimineus J. DE C. SOWERBY; Peron, p. 222.
v 1905 Pecten etiveyensis de Loriol; Pfron, p. 227, pl. 10, figs. 3, 4.
v 1905 Pecten desmonlinsianus Cotteau; Peron, p. 233, pl. 5, fig. 15, pl. 10, fig. 7.
1906 Pecten Ugolinii sp. nov; Fucini, p. 620, pl. 11, fig. 4.
? 1906 Pecten capillatus sp. nov; FUCIN1, p. 622, pl. 11, fig. 5 .
(?) 1907 Pecten (Chlamys) dispar Terquem; Joi 1, p. 75.
1907 Chlamys textoria (SCHLOTHEIM); RiAZ, p. 6.20.
1907b Chlamys subarticulata (D'Orbigny); COSsmann, p. 1, pl. 2, figs. 1, 2.

1907 b Chlamys camillus (D'Orbigny); Cossmann, p. 2, pl. 2, fig. 7.
1907b Chlamys cf. stricta (MUNSTER); COSSMANN, p. 2, pl. 2, fig. 5 (non Munster sp.).
1910 Chlamys dewalquei (Oppel); Lissajous, p. 360, pl. 10, fig. 3.
1910 Chlamys subtextoria (MUNSTER); Lissajous, p. 360, pl. 10, fig. 4.

1911 Pecten (Chlamys) protextorius sp. nov; Rollier, p. 264.

1911 Pecten (Chlamys) jurensis Riche;Rollier, 265.
1911 Pecten (Chlamys) Schombergensis sp. nov; RouLIER, p. 266.
1911 Pecten (Chlamys) Brisgoviensis sp. nov; ROLLIER, p. 267.

1911 Pecten (Chlamys) Scblippei sp. nov; ROllier, p. 267.

1911 Pecten (Chlamys) Lycettz sp. nov; ROLlifr, p. 267.

1911 Chlamys bathonica sp. nov; Cossmann, p. 1 . pl. 1, figs. 1-4.
1914 Chlamys Gadoisi sp. nov; Cossmann, p. 3, pl. 5, fig. 2. IVANOFF, p. 16, pl. 2, fig. 8.
1917 Pecten subambiguus sp. nov; Borissiak and 1VANOFF, p. 18, pl. 2, figs. 7, 7a.
1920 Pecten anastomoplicus Gemmellaro and Di Blasi; Faure-Marguerit, p. 54.
1920 Pecten strambergenss Rfmps; Faurl-MargulrIT, p. 57.
1920 Pecten moravicus Remes; Faure-Marguerit, p. 58.

1920 Pecten vimine 35 J. DE C. Sowerbx; Faure-MarGUERIT, p. 58.
1920 Pecten aff. viminers J. de C. Sowerby; FaureMargufrit, p. 59.
1920 Pecten articulatus (Schlotheim); Faure-Mar GUERIT, p. 59.
1920 Pecten artıculatus var. passsant à P. anastomoplicus Gfmmeilaro; Faure-Marguerit, p. 59
1920 Pecten (Chlamys) subtextorius MUNSTER; FAUREMarguerit, p. 60.
1920 Pecten Rolleiformis sp. nov; FuClNi, p. 90, pl. 5, figs. 15, 16.
Pecten (Chlamys) tornlosz Quenstedt; ERNST, p. 52, pl. 1, lig. 8.

1923 Cblamys Dewalquei (Oppel); Lissajous, p. 158, pl. 30, 1igs. 3, 3 a .
1926 Chlamystextoria (Schlothfim);Staesche, p. 30.
v 1926 Chlamys aff. textoriae (Schiotheim); Staesche, p. 30, pl. 1, figs. 8, 9.
v 1926 Chlanrys torulosi (Quenstedt); STAESCHE, p. 33, pl. 1, fig. 1.
1926 Chlamys cf. Phillis (D'Orbigny); Staesche, p. 34, pl. 1, fig. 12

1926 Chlamys Dewalquet (Oppei); Staesche, p. 35.
v 1926 Chlamys ambigua (MONSTER); STAESCHE, p. 36, pl. 1, fig. 2.
v 1926 Chlamys Rosimon (D'Orbigni); Stafsche, p. 38, pl. 2. fig. 1 (non D'Orbigni sp.).
v 1926 Chlamys aff. Lotharmgicae (BRANCO); STAESCHE, p. 38, pl. 1, figs. 5, 6 .

1926 Chlamys Meriami (Greppin); Staesche, p. 39. pl. 1, fig. 3 (non Greppin sp.).
1926
1926
1926
pv 1926 Chlamys Nattheimensis (DE Loriol); Stafsche, p. 42, pl. 1, fig. 13, pl. 2, fig. 2.

	Chlamys Qu pl. 1. fig. 7.
1926	Chlamys of. episcopalis (De Loriol); Staesche,
19	(0)
1926	Chlamys textora (Schlotheim): Roman,
	Chlamys ambigua (MUNSTER); ROMAN, p. 155.
1926	Chlamys subtextoria (MUNSTER); ROMAN, pp. 193, 196, 197.
1926	Pecten vimurus J. de C. Somerby; Roman, p. 197.
1928	Chamys cf. vimment (J. De C. Sowerbi); Doug. las and Arkeli, p. 136.
1929	Pecten (Chlamys) textorizs (Schlotheim); LaN. QUINE, pp. 82, 84, 188.
1929	Pecten (Chlamys) Dewalquei Oppel; Lanquine. pp. 131, 199, 300, 310, 32 -
929	Pecten (Chlamys) ambiguus (MUNSTER); LaN. QUINE, pp. 300, 324.
1929	Pectern (Chlamys) cf. Jurensis Riche; Lanquine, p. 300.
1930a	Chlamys (Chlamys) nattheimensis (DE LORIOL); Arkell, p. 104, pl. 10, figs. 6-8.
v 1931a	Chlamys (Chlamys) splendens (Dollfus); Ar.
v 1931a	Chlamys (Chlamys) cf. blyensis (DE LORIOL); Arkell, p. 110, pl, 11, figs. 1, 1a.
1931	Pecterrumineus J. De C. Sowerby; Yin, p. 121.
1931	Pecterr strambergenses Remes; Yin, p. 122, pl. 12, fig. 8.
1932	
1933	Pectern (Chlamys) sp. - subtextoria group; DietRICH, p. 64, pl. 9, fig. 35.
1934	Chlamys di. textoria (SChlothem); RosenkRANTZ, p. 113.
1937	Chlamys rollei (Stoliczka); Rosfnkrantz, p. 113 .
1935a	Chlamys of. splenders (Doilfus); Cox, p. 175 pl. 18, fig. 10.
1935b	
1936	
v 1936	Chlamys textorius (Schiotheim); Dechaseaux p. 13, pl. 1, figs, 1-4.
v 1936	Chlamys ambrguus (Munster); Dechaseaux, p. 14, pl. 2, fig. 2, pl. 3, fig. 1 .
v 1936	Chlamys Dezualquei (Oppel); Dechaseaux, p. 15, pl. 1, figs. 5, 7, pl. 2, fig. 4
1936	Chlamys lotharingicus (Branco); Dechasealx p. 17.
1936	Chlamys Camillus (D'Orbigny); Dechaseaux, p. 18.
1936	Chlamys episcopalis (De LORIOL): Dechaseau p. 18.
v 1936	Chlamys etiveyensis (De Lorior); Dechaseal p. 18, pl. 3, figs. 3, 4.
36	Chlamys subtextorzus (Munster); Dechaseau p. 19, pl. 3, fig. 2.
936	Chlanys splendens (DOLlfus); DEC p. 20.
v 1936	Chlamys Blyensls (de Loriol); Dechaseaux, p. 20, pl. 3, fig. 8.
v 1936	Chlamys subarticulatus (D'OrbigNY); DECHA EAUX, p. 21, pl. 3 figs. 5, 6.
v 1936	Chlamys Natthermensis (DE Loriol); Dechas faux, p. 22, pl. 3, fig. 7.
1936	Chlamys Nisus (D'Orbigny);
936	Chlamys Guyotz (de Loriol); Dechaseau p. 24.
936	Chlanys Bourgeatz (Je LORIOL); p. 24, pl. 3, fig. 10.

1936 Chlamys sp; Dechaseaux, p. 24, pl. 4, fig. 1.
(?) 1936 Pecten (Chlamys) dispar Terquem; Dechaseaux, p. 27.
$\mathrm{v}^{*} 1936$ Chlamys neamarktensis sp. nov; KUHN, p. 247, pl. 12, fig. 40.
1938 Chlamys Dewalquet (Oppel); Choubert, p. 198.
1938 Chlamys of. ambigua (MUNSTER); WEIR, p. 47, pl. 3, figs. 9, 10.
1942 Pecten (Chlamys) textorius (Schlotheim); LfanZA, p. 172, pl. 7, fig. 2.
1942 Pecten (Chlamys) textorius var. torulosa Quen stedt; Leanza, p. 173. pl. 7, fig. 4.
1948 Chlamys ruminea (J. DE C. Sowerby); Cox and Arkell, p. 11.
Chlamys ambigua (Munster); COX and Arkell, p. 12.

Chlamys jurensis (Riche); COX and Arkell, p. 12.

1948 Chlamys subtextora (MUNSTER); COX and ARkELI, p. 12.
1951 Chlamys torulosi (Quenstedt); Mauberge, p. 367.

1951 Chlamiys textora (Schlotheim); Troedsson, p. 213, pl. 21, figs. 14-16.

1952 Chlamys anbigua (MUNSTER); COX, p. 4, pl. 1, figs. 2-t.
1952 Chlamys subtextorua (MUNstFR); Cox, p. 6, pl. I, figs. 5-7.
1952 Chlamys cf. episcopalis (DE Loriol); Cox, p. 7, pl. 1, fig. 1.
1952 Chlamys sp. indet; Cox, p. 9, pl. 1, fig. 8.
? 1953 Chlamys (Chlamys) zounschae sp. nov; Marwick, p. 98, pl. 10, figs. 23, 24.

1956 Chlamys subulata securis (Dumortier); MelVille, p. 121. pl. 5, figs. 4, 5.
1957 Chlamys kurumensis sp. nov; Kobayashi and Hayami in Hayami, p. 119. pl. 20, figs. 1a, 1 b.
1961 Chlamys textorta (Schlothfim); Hayami, pp. 254, 318, 319.
1961 Chlamys dewalquei var. jurersis (Riche); Barbulescu, p. 702.
1964 Chlamys luciensis (d'Orbigny); J.-C. Fischer, p. 17, pl. 1, figs. 14, 15.

1965 Chlamys subtextoria (MUNSTER); COX, p. 55, pl. 7, fig. 8.
1966 Chlamys textorius (Schlotheim); Behmel and Geyfr, p. 28.
1966 Chlamys torulosi (Quenstedt); Behmel and Geyer, p. 28.
1967 Chlamys textoria (Schlotheim); Berridge and 1vimel-Cook, p. 160.
1968 Chlanys textoria (Schlotheim); Wobber, p. 36.
1970 Chlamys of. natthermensis (DE LORIOL); Behmel, p. 62 .

1970 Chlamys cf. quenstedti (Blake); Behmel, p. 62.
1971 Chlamys cf, textoria (Schlotheim); Hallam, pp. 242-244, 246, 247.
1973 Entohum (?) Stoliczkai (Gemmellaro); Lentini, p. 27, pl. 16, fig. 1 (non Gemmellaro sp.).

1973 Chlamys (Aequipecten) cfr. Pollux (D'Orbigny); Lentini, p. 27, pl. 16, fig. 1 (non d'Orbigny sp.).
1973 Chlamys (Velata) cfr. velata (Gotdfuss); Len. tini, p. 29, pl. 15, fig. 8 (non Goldfuss sp.).
1974 Chlamys enantyi sp. nov; Skwarko, p. 83, pl. 26, figs. 1, 6, 12.
v 1975 Chlamys subtextoria (MUNSTER); YAMANI, P. 56, pl. 2, figs. 15, 16.
v 1975 Chlamys paraphora (Boehm); Yamani, p. 57, pl. 2, fig. 18.
v 1975 Chlanys quenstedti (Blake); Yamanl, p. 58, pl. 2, figs. 1, 2.
v*? 1978 Chlamys (Chlamys) bedfordensts sp. nov; Duff, p. 69, pl. 5, figs. 14-16, 18, 21, text fig. 23.

Lectotype of Pectinites textorius Schlotheim 1820, p. 229 designated herein; HM-M23; Pl. 8, Fig. 20 herein; H: 55, L: 51; L. Lias, Amberg (Franconia).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Aus älterem Flötzkalk (sogenannten Gryphitenkalk) von Amberg, theils der Gebirgsart aufliegend, theils in freyen Exemplaren, mit versteinerter Schale, jedoch etwas schädigt, und einige mit beyden Hälften (4 Ex.).

In der Form und Querstreifung dem Pectin. asper ähnlich, aber die Beschaffenheit und Richtung der Strahlen sehr verschieden. Sie sind ungleich dünner, liegen viel enger zusammen, und zwischen jedem etwas stärkeren und hervorspringenden wird abwechselnd ein etwas tiefer liegender, feinerer sichtbar. Äußerst feine, scharf hervortretende Querstreifen, welche eng zusammenlaufen, und auf jedem Längenstrahl kleine hervorstehende Schuppen bilden, geben dem Ganzen ein gestricktes oder gewebtes Ansehen. Beyde Hälften sind flach und gleichförmig gewölbr. Scheint nicht sehr häufig vorzukommen und ist in schön erhaltenen und vollständigen Exemplaren sehr selten.'

2. AMENDED DIAGNOSIS

Distinguished from other Jurassic species of $C h$. (Chlamys) by the presence of imbricate lamellae on the plicae.

3. AMENDED DESCRIPTION

Disc shape variable, sub-orbicular early in ontogeny, becoming increasingly sub-ovate, higher than long (text fig. 148) towards the maximum height of 93.5 mm (GPIT 2-92-3). Umbonal angle increasing during ontogeny but very variable, tending to be relatively high in forms with many plicae (text figs. 149, 147). Dorsal margins concave; disc flanks low.

Approximately equilateral; inequivalve, left valve lowmoderate convexity, right valve usually almost flat. Intersinal distance variable, greater in left valve than right, increasing isometrically in the former and at a decreasing rate with respect to length in the latter (text figs. 150, 151). Depth of byssal notch variable, moderate to large, but increasing with approximate isometry (text fig. 152).

Auricles well demarcated from disc, variable in size. Both posterior auricles meeting hinge line at an obtuse angle and disc at an acute angle. Anterior auricles meeting disc at an acute angle and hingeline at a variable angle, 90° or less. All auricles bearing comarginal imbricate lamellae, anterior auri-

Text fig. 148: Chlamys (Ch.) textoria - height/length.

Text fig. 149: Chlamys (Cb.) textorid - height/umbonal angle.

Text fig. 151: Cblamys (Ch.) textorat - intersinal distance on right valve/length.
cle of left valve also bearing radial striae of variable prominence. Anterior auricle height variable (text fig. 153). Anterior and posterior hinge lengths both variable, former increasing with respect to length at a slightly decreasing rate (text fig. 15t), latter increasing at a slightly increasing rate (text fig. 155).

Disc exterior ornamented with a variable number of radial plicae, tending to increase in number by either intercalation or splitting but at a very variable rate (Pl. 6, Figs. 10-12, Pl. 7, Figs. 1-23, Pl. 8, Figs. 1-3, 5-20). Between 17 and 30 plicae at the earliest stages in ontogeny, between 17 and 98 at $\mathrm{L}: 20$ (text fig. 146), between 17 and 121 at L: 40 (text fig. 146) and between 17 and at least 62 at $L: 60$ (text fig. 146). Plicae bearing variahly spaced imbricate comarginal lamellae which tend to be closer and lower in forms with more plicae. Lamellae generally lower on right cf. left valves of all forms.

Shell thickness moderate.

4. DISCUSSION

The lectotype (herein designated) of 'Pectinites' textorius Schlothein (HM M23; Pl. 8, Fig. 20) is a poorly preserved specimen but the ornament and metric proportions (1) clearly fall within the range of the species described in Section 3. The latter, by reason of the historically senior position of Schlotheim's taxonomic species is therefore known hereinafter as Chlamys (Ch.) textoria.

The following type specimens cannot be separated from Ch. (Ch.) textoria by their metric proportions and their plical counts at the given length (in square brackets) also fall within the range of the species.

The sole known type of:
2. 'Pecten' vimineus J. DE C. Sowerby (BM 43318 ; Pl. 8,

Figs. 1, 5) [21:60];
the sole observed types of:
3. 'P.' ambetguts Munster (BSPHG AS VII 620; PI. 7. Fig. 17) [32: 36|.
4. 'P.' subtextorius Munster (BSPHG AS VII 623; Pl. 7, Fig. 16) [41: 30]; the holotype (M) of:
5. ' P.' semispenatzs Tfrquevi and Jourdy (ENSM L342; P!. 7, Fig. 4) [22:20]; the sole observed syntype of:
6. 'P.' paraphoros Boehm (BSPHG) [43:16]; the sole observed type of:
7. 'P.' pelops DE Loriol (MNS B. 03982 ; Pl. 7. Fig. 6) [20:34]; a possible syntype of:
8. 'P.' episcopulis de Loriol (MNO 3761; PI. 7, Fig. 18) [38:26]: syntypes of:
9. 'P.' (Chlamys) Etiveyensis DE LORIML (MNS B.03986; Pl. 7, Fig. 22) [$40: 38$];
10. 'P.' desmonlinsianus Cotteau (MNS B.03987; Pl. 7. Figs. 2, 3) [18:12]; the sole observed syntype of:
11. Ch. articulata var. notgroviensis Paris and Richard. son (BM L+1976; Pl. 7, Fig. 19) [27:51]; the sole observed type of:
12. Ch. articulata var. sahzeara Paris and Richardson (BM L+1978: PI. 7, Figs. 1, 7) [21:56]; the holotype (M) of:
13. Ch. netmarktensis KUHN (BSPHG AS \& 867; Pl. 7. Fig. 13) [26:48]; the alleged holotype (M) of:
14. 'P.' texturatus Munster (BSPHG AS VII 619; PI. 7. Fig. 21) [46:63]; and the syntypes of:

15. 'P.' Phills d'Orbigny (MNO 2075A-C; Pl. 6, Fig. 10, P」. 7, Fig. 5) [respectively 17:31, 19:39, 21:29].
16. 'P.' shbarticulatus d'Orblony (MNO 4286, 4286A) [respectively 19:39, 19:30].
The original figures of the following are similarly inseparable:
17. 'P.'virguliferus Phillips [39:20].
18. 'P.' subimbricatus Rofmer [60:33.5].
19. 'P.' palosus Stoliczna [45:23].
20. 'P.' Sismondue Capellivi [36:23].
21. 'P.' Fortunatus Dumortifr [36:45].
22. 'P.' ahastomoplicus Gemurllaro and Di Blasi [20:65].
23. 'P.' erctensis Gevimellaro and Di Blasi [32:37].
24. 'P.' Ferax de Loriol [50:27].
25. 'P.' (Ch.) silanus Greco [35:26].
26. 'P.' (Ch.) blyerisas de Loriol [36:38.5].
27. 'P.' (Ch.) Bourgeati de Loriol [18:35].
28. 'P.' subambiguus Borissiah and IVavoff [19:40].

Metric proportions of the original figures of the following are inseparable from C . (C .)) textoria but the number of plicae cannot be counted due to poor drawing, although it appears to be within the range of the latter species.
29. 'P.' textorius toritosi Qufnstedt.
30. ' P.' securis Dunortifr.

The following type specimens plot outside the range of text figs. 1+8-155 for the parameters stated but may be considered to be extreme variants of Ch . (Ch.) textoria since their plical counts at the lengths stated are within the ranges described in Section 3.

The holotype (M) of:
31. 'P.' Quenstedtz Blake GPIT 2-92-3; Pl. 6, Fig. 12), high H/UA [20:80.5];
the sole observed syntype of:
32. 'P.' textorius albus Quenstedt (GPIT), low H/UA [47:16.5];
the sole observed type of:
33. 'P.' subtextorius Schnaitheimensis Quenstedt (GPIT 4-92-7; Pl. 8, Fig. 13), high H/UA and HAA/L [43:27];
the sole observed syntype of:
34. 'P.' lacunarius Rothpletz (BSPHG AS XXIV 52; Pl. 6, Fig. 11), low H/UA [25:22].
The following original figures are considered to be inseparable for the same reasons.
35. 'P.' Benedicti Contejean, high H/UA $\{30: 20.5]$.
36. 'P.' subreticulatus Stoliczka, low H/UA [70:32.5].
37. 'P.' Rollei Stoliczka, low H/UA $[50: 32]$.
38. 'P.' verticillus Stolicza, low H/UA [70:38].
39. 'P.' splendens Dollfus, low $\mathrm{I}_{\mathrm{L}} / \mathrm{L}$ [30:68.5].
40. 'P.' (Ch.) Veneris Gemafllaro and Di Blasl, low H/UA (80:19]).
41. 'P.' Guyoti de Lorior, high H/L and H/UA [35:54].
42. 'P.' morazicus Reves, high H/UA [25:28].
43. 'P.' strambergensis Remes, high PH/L [18:15.5].

Although it has not been possible to accurately measure the number of plicae in the original figures of the following species, the overall density of the ornament (in square brackets) appears to be within the range of Ch . (Ch.) textoria and the anomalous metric proportions stated are probably a consequence of enlargement or distortion in illustration.
44. 'P.' Billoti Contejean, high H/UA [coarse].
45. 'P.' Ponzu Gemmellaro, low H/UA [fine].
46. 'P.' Ugolimi Fucint, low H/UA [fine].

The figure of 'P.' capillatus Fucini (47) also has low H/UA but the ornament is dense enough [$40: 9$] to suggest that it may belong to a different species.

In cases 7,14,29,30 and 40 above, the reduction or complete loss of the comarginal ornament is probably due to abrasion. In cases 13,22, 23 and 31 the lack of comarginal orna-

Text fig. 153: Chlamys (Ch.) textoria - height of anterior auricle/length.
ment is due to preservation as internal moulds. In 18 and 43 the apparently larger size of the posterior compared to the anterior auricle is clearly due to reversal in printing and measurements have been correspondingly altered.
'P.' vimineus (2) has been used by Bоғнм (1881a) for forms said to have as few as 16 plicae (i. e. outside the range of Cb . (Ch.) textoria). Boenm's figures do not, however, support this claim since they depict specimens with 18-19 plicae. Krenkel (1915) has applied J. de C. Sowerby's specific name to forms which, by the irregularity of the ornament, are probably referable to Eopecten.
'P.' Quenstedti (31) was erected by Blake (1875) for the specimen which was incorrectly referred to 'P.' dentatus J. DE C. Sowerby by Quenstedt (1858). 'P.' moravicus (42) was created by Remes (1903) for the original of ' P.' n . sp. (Bоенм, 1883), among other specimens.

Quenstedt's subspecies ' P.' textorius tortlosi (29) and ' P.' subtextoritis Schnaitheimensis (33) were subsequently raised to specific rank by respectively Ernst (1923) and Thurmann and Étallon (1862). Although outside Quenstedt's hypodigm, Thuruann and Étalion's species (with 18 plicae throughout ontogeny) is within the present author's hypodigm for $C h$. (Ch.) textoria. Varietal use of the name torulosi (see Synonymy) does not differ from the original hypodigm. Subspecific use of ' P.' securis Dumortier (30) by Melville (1956) is also within the original hypodigm.
'P.' (Ch.) Etiveyensis de Loriol (9) was created for the holotype (M) of ' P.' icaunensis Cotteau in the belief that the
latter name was a junior homonym of a Neocomian species. In fact the Neocomian species was described after the Jurassic species in Cotteau's work ($1855: 115$) thus it could be argued that the latter is the senior homonym and that de Loriot's species is therefore a junior objective sy nonym which must be rejected.
'P.' subartictulatus d'Orbigny (16) must be rejected since it is a junior primary homonym of a Valanginian species described by Roemer (1839).

The following specimens are too poorly preserved to allow measurement of the metric proportions plotted in text figs. 148-155. However the general form and number of plicae (in square brackets) is within the range of C h. (Ch.) textoria of comparable size.
a. The syntypes of 'P.' Luciensis d'Orbignt (MNO 2910) [20].
b. The syntypes pf ' P.' Camillus D'Orbigny (MNO 3400A-D; Pl. 7, Fig. 10) [23-24].
c. 'The syntypes of 'P.' Opis D'Orbigny (MNO 3762, 3762A, 3762B) [30].
d. The syntypes of 'P.' Nisits D'Orbigny (MNO 4289) [19].
e. The syntypes of 'P.' Niso d'Orbigny (MNO 4291, 4291A) [39].
f. The sole observed type of 'Eopecten' articulatus Paris and Richardson (BM L42060; Pl. 8, Fig. 2) [21].
g. The original of Ch. Rosimon (d'Orbigny); Staesche (GPIT 1592/5; Pl. 8, Fig. 16) [48].
h. The original of Ch. sp., Dechaseaux [18].

Text fig. 154: Chlamys (Ch.) textorn - anterior hinge length/length.

Text fig. 155: Chlamys (Ch.) textora - posterior hinge length/length.

The original figures of the following are poor illustrations or depict incompletely preserved specimens. However, they are similarly inseparable from Ch . (Ch.) textornt.
i. 'P.' varius Linnafus; Young and Bird (non Linnafus) [23].
j. 'P.' elegans Young and Bird [27].
k. 'P.'textorins var, orbicularis Koch and Dunker [+3].

1. 'P.' Nothus d'Orbigny in Boule [19].
m. 'P.' Hermanciac Étailon [25].
n. 'P.'Janiformis Lundgren [20].
o. 'P.' Lotharingicus Branco [22].
p. 'P.' bipartitus Futterer [28].
q. Ch. cf. stricta (Munster); Cossmann (non Munster) [35].
r. Ch. Gadoisi Cossmann [22].
s. 'P.' (Ch.) sp. indet; Rollier [22].
t. 'P.' Labusemi Borissiak and Ivanoff [27].
u. 'P.' Rolleiformis Fucini [30].
v. Ch. sp; Cox [27].
W. 'Aequipecten' sp; Wandel [20].
x. Ch. sp; Dechasfaux [18].
y. Ch. sp. indet; Cox [19].
z. Ch. kurumensis Kobayashi and Hayami [42].
a_{1}. Ch. enantyi Skwarko [30].

The reduced development of comarginal ornament in a, 1 , o, u and x can be attributed to abrasion. However, the smoothness of the right valve compared to the strong ornamentation of the left in ' P.' Janformis (n) may be indicative of a specific difference. The irregular plication of E. articulatus (f) is only known in two specimens and may be caused by restricted growth amongst corals (see Section 8).

One of the original syntypes of 'P.' Nothus (MNO 4284) was shown by Boule (1929) to be representative of Radislopecten inequicostatus. To avoid confusion d'Orbigny's hypodigm was restricted to the specimen (1) which is clearly an example of Cb . (Cb.) textoria.

The figures of 'P.'peruanus Tilmann, 'P.'pseudotextorus Rfdilich; Borissial and fvanoff, Ch. Meriami (Greppin); Stafsche (non Greppin), 'P.' (Ch.) sp; Dietrich, 'Entolium' (?) Stoliczkai (Gfmmellaro); Lentini (non Gemmellaro), Ch. ('Aequipecten') cfr. velata (Golfuss); Lentini (non Goldeuss) all depict imperfectly preserved specimens in which neither the number of plicae nor the metric proportions could be accurately measured. However, except in the case of ' P.' peruanus (where there is some resemblance to $\mathrm{Ch} .(\mathrm{Cb}$. valomiensis), the overall form and disposition of the plicae leave little doubt that they should be included within Ch. (Ch.) textoria. Redich's original description of 'P.' psendotextorins has yet to be traced.

The figures of ' P.' textorims γ Quenstedt and 'P.'canalicilatus Terquem and Piftede depict fragmented specimens but the characteristic ornament of Ch . (Ch.) textoria is clearly visible.

The original description of Ch. (Ch.) bedfordensis Duff specifies, in contrast to Ch . (Ch.) textoria, different numbers of plicae on the right (70) and left (40) valves. However, it is not clear whether the description is based on a bivalved specimen and the holotype (OD; a right valve) of Cb . (Ch.) bedfordensis (BM LL27724) is very similar to small, finely ornamented specimens of Ch . (Ch.) textoria. Bearing in mind the great variability in the number of plicae in the latter species Ch. (Ch.) bedfordensis may well be synonymous.

The major proportion of the disc ornament in $\mathrm{Ch} .(\mathrm{Ch}$.) wunschare Marwich is very similar to Ch . (Ch.) textoria but the existence of what appears to be 'Camptonectes-ornament' on the anterior and posterior dorsal margins probably serves to distinguish the species.

The specific name articulatus Schlothem has frequently been applied (see Synonymy) to coarsely ornamented forms of Ch . (Ch.) textoria following the illustration of such a form under 'P.' articulatue by Goldflss (1833). However, v. Sebbach (1864) and Cossuann (1911) have examined Schlothfim's type material and pronounced it to be representative of P. vagans J. De C. Sowerby ($=$ Radulopecten vagans). Subsequent illustration of syntypes by Staesche (1926, pl. 1, figs. 10, 11) has confirmed distinctiveness from $C h$. (Cb.) textoria (and thus the inappropriate use of the name by Goldfuss and later authors) although the affinities of the specimens seem to be with R. inequicostatus. v. Seebach considered that J. de C. Sowfrby's specific name viminens should be applied to forms like ' P.' 'articulatus Goldfuss but de Loriol (1894) reckoned J. de C. Sowerby's species (from the tnferior Oolite [Cox and Arkifl, 1948]) to be distinct from that of Goldfuss (from the Tithonian) and therefore
created a new name (nattheimicnsis) for the latter. CossmanN created Cb. bathonica for similar specimens from the Bathonian, reasoning apparently that mere stratigraphic separation merited a specific distinction. Oppl (1858) created 'P.' Dewalquei for specimens referred to 'P.' articulatus by Chapurs and Dewaluue (1853) which he presumably considered to be outside Golofuss' hypodigm for the species. The variety' Jurensis Riche (1893) was created for forms with compound plicae and raised to specific rank by Roltifr (1911). Since this feature is a common aspect of the variation in coarsely ornamented Ch. (Ch.) textoria (e. g. Pl. 7, Fig. 11), 'P.' (Ch.) jurensis can salely be synonymised.

Roller's species 'P.'(Ch.) protextorius, 'P.' (Ch.) Schombergensis, 'P.' (Ch.) Brisgoviensis, 'P.' (Ch.) Schlippei and 'P.' (Ch.) Lycetti were erected for specimens which he considered had been incorrectly assigned to synonyms of Ch. (Ch.) textoria by previous authors (respectively 'P.' textorius torklosi Quenstedt, 'P.' textorius Schlothfin; Quenstedt, ' P.' ambiguths Monster; Schlippe, ' P.' Dewalquci Oppl; Schlippe, 'P.'articulatus Schlothem; Lycett) but which are within the present author's hypodigm for Ch . (Ch.) textoria.

The affinities of 'P.' Palaemon D'Orbigny, 'P.'dispar Terquem, 'P.' textlilis Munstfr and ' P.' Trigen Oppel (and subsequent references thereto) are discussed under respectively, Entolum (E.) Ihnare, Ch. (Ch.) valoniensis and Camptonectes (C.) subulatus (last two).

In the interests of brevity secondary references to synonymous species are only listed in the synonymy where they occur in major works (e. g. Staesche, 1926, De Chaseaux, 1936) or where they are of relevance to the preceding discussed or sections 5-10. Further secondary references may be traced in Roemir (1839), Qufnstedt (1843, 1852), d'Orbigny (1850), Bronn (1852), Oppel (1866), Lalbe (1867), Waagen (1867), Brauns (1871), Tate and Blake (1876), Lundgren (1881), Simpson (1884), Behrfndsen (1891), Siemiradzki (1893), Bettoni (1900), Cossuann (1900), Trauth (1909), Simionescu (1910), Blaschre (1911), Rollier (1911), Cossuann (1919), Cox (1928), Vinassa de Regny (1933), Rakus (1964), Urlichs (1966), Barbulescu (1971) and Nitzopeulos (1974).

5. STRATIGRAPHIC RANGE

The earliest zonally defined records of Ch. (Ch.) textoriat are from the Planorbis zone (Hettangian) of S. England (author's collection), the Rhone Basin (Dumortier, 1864), the Northern Alps (Neumayr, 1879) and Peru (Tilmann, 1917). Earlier records may however be constituted by occurrences in the 'Rhaeto-Lias' of E. France (Terquem, 1855) and N. Italy (Capel lini, 1866). Apart from the above and records from the Angulata zone of S. England (BM 77247) and F. France (Terquen and Piette, 1865) the species is unknown until the Sinemurian when it becomes widespread and locally common. Numbers in the L. and U. Pliensbachian are perhaps somewhat reduced but the species remains widespread until the Toarcian. tn the L. Toarcian Ch. (Ch.) textoria appears only to occur in any numbers in the Tenuicostatum zone of Luxembourg (Mauberge, 1851) and the Bifrons zone of the Lyonnais (Duvortier, 1874; Riaz, 1907; Roman, 1926). Certain U. Toarcian records are limited to specimens from the

Text fig. 156: Chlamys (Ch.) textoria - European distribution.

Cotswolds (BM L+1990), E. Spain (Bfhmel and Geyer, 1966), Portugal (Hallan, 1971), L. Saxony (Ernst, 1923) and Swabia (Stafschf, 1926); the latter being the only area where the species occurs fairly frequently. Other Toarcian records in the literature (Verneull and Collomb, 1952; J. Meneghini, 1881; Burchhardt, 1903; Lanquine, 1929; Dechaseaux, 1936) are from unspecified horizons within the stage and refer to indeterminate numbers of specimens. 'Toarcian' museum specimens, apart from those which are representative of the above records, are limited to three examples from Normandy (BM 65891, 65897, L38023) and one from Chile (BM LL26315).

In the Aalenian Ch. (Ch.) textorid again becomes locally common and continues thus through the Bajocian. In the Bathonian common occurrences are considerably more sparsely distributed and in the Callovian the species is only known to occur commonly at one horizon (Lamberti zone of Brora, Scotland). Apart from specimens from this locality undoubted examples of Ch . (Ch.) textoria from the Callovian in museums are limited to nine specimens from the E. Paris Basin (MNO [3], MNP [3], GPIT [2], DM) two from S. Germany (BSPHG, GPIG), two from Poland (BM LL17246-7) and two from England (SbM, OUM J4823). Bibliographic records excluding those which refer to the above specimens are limited to Russia (Lahusfn, 1883; Borissiak and Ivavoff, 1917), Rumania (Barbulescu, 1961), S. Germany (Schlippe, 1888), the E. Paris Basin (Dechaseaux, 1936), the Rhone Basin (Lissajous, 1910, 1923) and England (Duuglas and Arkell, 1928; Cox and Arbell, 1948) and the number of specimens in each case is probably small.
In the Oxfordian Ch. (Ch.) textoria again becomes locally common and continues thus until the U . Tithonian (Bоeнм, 1883; Reves, 1903; Kilian and Guebhard, 1905; Yin, 1931). However, distribution is at all times somewhat patchy.

6. GEOGRAPHIC RANGE

In the Lias Ch. (Ch.) textoria is known from a great many localities over a large area of Europe (text fig. 156) and at the
same time it occurs widely in S. America (text fig. 157). The palaeolatitudinal range is thus about 100°. Since the species occurs in the Planorbis zone of both Europe and S. America migration to produce the disjunct distribution must have occurred either very early in the Jurassic or in the Triassic. The lack of direct shelf connections over this period would have forced Cb. (Ch.) textoria to use extremely long routes through either the Arctic or Antarctic regions if deep waters were to have been avoided. If the occurrence of specimens in the L. Jurassic outside Europe and S. America is at all indicative (by way of signifying the existence of populations which might be relicts) of the route taken, then the records of Ch. (Ch.) textoria from Japan and Siberta suggest that the Arctic route was adopted. However, the apparent absence of C b. (Ch.) textoria from the L. Jurassic of western N. America (Hayaun's [1961] record from N. America presumably referring to specimens collected from E. Greenland by Rosenkrantz [1934]) argues against this hypothesis and since Marwich's (1953) single, doubtfully conspecific, specimen (see Section 4) is the only record from the L. Jurassic of Oceania the Antarctic route seems also to be precluded. The available evidence therefore suggests that Ch. (Ch.) textoria was able to migrate via the direct, deep water route of the Tethys and Pacific Oceans.

During the Toarcian Ch . (Ch.) textoria became much more sparsely distributed in Europe and outside the continent the species may well have been restricted to S. America.

During the Aalenian Ch. (Ch.) textoria was apparently confined to Europe where, however, it became more widespread although largely absent from the peri-Mediterranean region. A similar pattern of distribution was maintained throughout the rest of the Jurassic in Europe.

In the Bajocian the range extended along the southern shores of Tethys and apart from an apparent break in the Bathonian (which may be a function of collection failure) the species persisted in the latter area until the Kimmeridgian. W'andel's (1936) single specimen from the Oxfordian of the E. Indies may indicate a similar spread along the northern shores of Tethys.

Text fig. 157: Chlamys (Ch.) textoria - World distribution (Callovian reconstruction).

The particular abundance of Cb . (Ch.) textoria in the Callovian of Cutch, India (Cox, 1952) in conjunction with the scarcity of the species in Europe (see Section 5) at this time suggests a shift in the centre of population, perhaps as a response to the widespread development of unfavourable bituminous shale facies (see Section 8) in the latter region.

In the Tithonian the range of Ch . (Ch.) textoria may well have contracted into Furope.

7. DESCRIPTION OF ECOLOGY

Rather than laboriously catalogue the particular variants of Ch. (Ch.) textoria present at a given locality the author has taken the liberty in the following description of referring specimens to one of three arbitrarily defined groups, characterised by the presence of 17-26 plicae, 27-36 plicae and more than 36 plicae at $\mathrm{L}: 20$, known hereinafter as the 'coarse', 'intermediate' and 'fine' phenotypes respectively.

Ch. (Ch.) textoria first occurs in any numbers in the Sinemurian when however it is found widely in all the major facies developed in the stage. It is particularly common in the Arietenkalk (Bucklandizone), a predominantly clay and micritic limestone sequence in S. W. Germany, where it reaches a maximum height of 53 mm (GPIT). All specimens in which the shell is preserved belong to the 'fine' phenotype. The species is also common in the stratigraphically slightly higher chamosite oolites of the Frodingham Ironstone (Semicos-tatum-Obtusum zones) where it reaches a maximum height of 37 mm (author's collection). The majority of specimens belong to the 'intermediate' phenotype but the 'fine' phenotype also occurs (assoc. fauna, p. 69). 'Fine' phenotypes constitute all the records of Ch . (Ch.) textoria from the U. Sinemurian Hierlatz Limestone of the N. Alps. Such phenotypes also form the basis for the many records of Ch . (Ch.) textoria from clays and micritic limestone in the L. Pliensbachian of S. W. Germany and the E. Paris Basin (where the species reaches a maximum height of 73.5 mm [Dechasfaux, 1936]). 'Intermediate' and 'coarse' phenotypes
from this stage are restricted to two specimens from Germany (BSPHG; Pl. 7, Fig. 12) and one from Lorraine (NM).
Ch . (Ch.) textoria is widespread in the U. Pliensbachian but appears only to be common in micritic limestones in Swabia (Staesche, 1926) where it reaches a maximum height of 60 mm (BSPHG). No specimens are known from sandy facies in substage (e. g. Sandy Series, Yorkshire; Down Cliff and Thorncombe Sands, Dorset) and the species is rare in chamositic colite facies (e. g. Cleveland and Banbury Ironstones) although it reaches a maximum height of 88 mm (BM 20166). In similar facies in the L. Toarcian of the Lyonnais the species is common but reaches a maximum height of only 36.5 mm (ENSM). 'Intermediate' phenotypes are more common than 'fine' but in argillaceous facies in the same substage in Luxembourg (Maubersf, 1951), Ch. (Ch.) textoria is represented only by 'fine' phenotypes (maximum height 35 mm [BSPHG]). All but one (GPIG) of the museum specimens examined by the author from argillaceous facies in the U . Toarcian of Swabia exhibit the 'fine' phenotype. The maximum height attained is 53.9 mm (Staesche, 1926). The associated benthic fauna is considerably reduced in density and somewhat reduced in diversity.
No specimens of C b. (Ch.) textoria have been recorded from Toarcian bituminous shale deposits. An isolated specimen exhibiting the 'fine' phenotype (BM 65897; Pl. 8. Fig. 19) from the argillaceous sequence of Normandy is the largest $(\mathrm{H}: 73.5)$ known from the stage.

Although reef and reef-derived deposits are known in the Jurassic as early as the U. Pliensbachian (Jebel Bou-Dahar, Morocco [Dubar, 1948]) Ch. (Ch.) textoria delays its appearance in such facies until the Aalenian, when it is found commonly in the Pea Grit Coral Bed of the Cheltenham area in association with abundant limid bivalves, brachiopods, bryozoa and corals. All museum specimens which are undoubtedly derived from this horizon and locality exhibit the 'coarse' phenotype. The maximum height is 52 mm (BM L41973). The species is rare in Aalenian chamosite oolites in Britain (Northampton Sand Ironstone) and S. W. Germany
but in Lorraine numerous specimens are recorded, reaching a maximum height of 65 mm (NM). 'Coarse' and 'intermediate' phenotypes are approximately equally represented.

In the Sauzei zone (L. Bajocian) of Malancourt Quarry, near Metz (E. Paris Basin), Ch. (Cb.) textoria occurs abundantly in a number of patch coral reefs and in the inter-reef biosparites and marls. In specimens collected by the author which are well enough preserved to allow plical counts to be made only one specimen of thirteen from the reef facies belongs to the 'intermediate' rather than the 'coarse' phenotype. Conversely, of ten specimens from the inter-reef facies only one belongs to the 'coarse' rather than the 'intermediate' phenotype. The maximum height of the author's specimens is 50 mm but a museum specimen (NM) from the same area and horizon has a height of 74.5 mm . The associated fauna in both reef and inter-reef facies is dominated by the bivalves Ctenostreon, Lopha, Luctha, Pseudolmeat and Tricbites, the brachiopods Cymatorbyncha, Flabelhrbynabia, Lobothyris and Rugutela, the echinoids Hemicidaris and Pseudodiadema, the gastropod Bourguetra and serpulids and bryozoans. The coral genera Isastrea and Thamnasteria form the bulk of the reef masses (Hallam, 1975b).

In the roughly contemporaneous Sowerbyi-Banke, a marly oolite in S. W. Germany, $\mathrm{Ch} .(\mathrm{Ch}$.) textoria is common and reaches a maximum height of 57 mm (GPtG). Of the eighteen specimens from this bed in the GPIG, fifteen exhibit the 'intermediate' phenotype, two the 'coarse' and one the 'fine'. A shell bed of approximately the same age (Concavum-Discites zones) at Bradford Abbas, near Sherborne, Dorset has yielded numerous examples of the 'coarse' phenotype of Ch . (Ch.) textoria up to a maximum height of 38.5 mm (BM L11559). The associated benthic fauna is diverse and includes the bivalves Trigonia and Astarte together with the gastropods 'Alaria', 'Cerithium', 'Purpurina' and 'Spinigera' and the brachiopod 'Terebratula' (Woodward, 1894).

In the U. Bajocian of the Cotswolds Cb. (Cb.) textoria is common in the Upper Coral Bed (Parkinsonizone) in association with the reef-inhabiting pectinids Spordylopecten (S.) palinturus and S. (S.) cardinatus. Of the museum specimens which are certainly derived from this horizon only one (BM L41968) exhibits the 'intermediate' rather than the 'coarse' phenotype.

The 'coarse' phenotype of Cb . (Ch.) textoria is quite common (author's collection) in a coral bed in the M. Bathonian of the Carrière de Campagnettes (Normandy). The bivalves Lithophaga, Plagiostoma, Trigonia and Vaugonia and the brachiopod Moorellina make up the majority of the associated fauna (T. Palmer, t974). A similar coral bed in Indre, where S. (S.) palinurus is an additional faunal element, also contains the 'coarse' phenotype of C \%. (Ch.) textoria (J.-C. Fischer, 1964).

In the U. Bathonian of Normandy the 'coarse' phenotype occurs quite commonly between sponge fronds in the reeflike structures exposed at St. Aubin. The maximum height is 50 mm (author's collection) and the most abundant elements of the associated fauna are the sponges Platychonia and Limnoria, the bivalve Plagtostoma, the brachioped Moorellina and ectoprocts and serpulid worms (T. Palmer, 1974). Ch. (Cb.) textorit is rare outside coralliferous or spongiferous deposits in the Bathonian.

The only common occurrence of Cb . (Cb .) textoria in the Callovian is in the Clylenish Quarry Sandsone (Lamberti zone, E. Scotland) where the majority of specimens exhibit the 'intermediate' phenotype. The maximum height attained is 67 mm (BM L20601). Most of the remaining few Callovian records (see Section 5) seem also to be from arenaceous facies. However, specimens described by Duff (1978) from the bituminous shales of the L. Oxford Clay (Coronatum zone) in England (BM LL27724-8) may constitute a record of Cb. (Ch.) textoria ('fine' phenotype) from argillaceous facies (see Section 4). The maximum height of Durf's specimens is 9.7 mm .

In the Oxfordian, Ch. (Ch.) textoria is common in deposits of the Plicatilis zone in Oxfordshire and in Yorkshire, where the species reaches a maximum height of 82 mm (YM 570). According to Arkell (1931a) specimens from coral patch reefs generally exhibit the 'coarse' phenotype while those from inter-reef oolites and biosparites show the 'intermediate' phenotype. In the succeeding Transversarium zone deposits in Yorkshire (Coral Rag), examples of the 'coarse' phenotype (author's collection) are associated with almost in situ corals at Whitewall Corner Quarry, near Malton (assoc. fauna p. 157). th the Ringstead Coral Bed (Pseudocordata zone) both 'coarse' and 'intermediate' phenotypes are found but the former become relatively more common to the east, paralleling an increase in the abundance of corals (Fursich, 1976). There are no records of Cb. (Cb.) textoria from the Oxfordian part of the Oxford Clay.

The 'coarse' phenotype is quite common in the Oxfordian coral reefs developed in the Swiss Jura (df Loriol, 1893) and the Yonne (MNP, assoc. fauna, p. 88). At least in the latter area specimens exhibiting the 'fine' phenotype (reaching a maximum height of $46 \mathrm{~mm}[\mathrm{MNP}]$) are also quite common in non-reef biomicrites. The 'intermediate' phenotype is absent from both areas.

Ch. (Ch.) textoria does not appear to be common elsewhere in the Oxfordian.

In the marly limestones of the Baden Beds (Kimmeridgian) in the Swriss Jura 'intermediate' phenotypes of Ch. (Cb.) textoria are quite common (DE LORIOL, 1878). Only seven of the nineteen museum specimens (GPIT [14], GPIG [4], BSPHG) which are undoubtedly derived from similar facies in the U. Jurassic of the Swabian Jura exhibit this phenotype ($\mathrm{H}_{\text {max }}$: 39, GPIT). The remainder is made up of specimens displaying the 'fine' phenotype ($\left.\mathrm{H}_{\text {max }}: 36, \mathrm{BSPHG}\right)$. Both the 'intermediate' (Dollfus, 1863) and 'coarse' (de Loriol and Pellat, 1875) phenotypes are recorded from clays in the Kimmeridgian of the Boulonnais but the numbers are indeterminate and probably small.

Cb. (Cb.) textoria is recorded from Kimmeridgian coralliferous facies in Franconia (Военм, 1881a) and the Jura (Contejean, 1859 ; Thurmann and Étallon, 1862) but is unknown at La Rochelle. In the L. Tithonian reef complex at Neuburg (assoc. fauna, p. 88) the species is common (Yamani, 1975). 'Coarse' and 'intermediate' phenotypes appear to be about equally frequent but the 'fine' phenotype is represented by only two specimens. By contrast, of the eleven museum specimens (GPIT [9], BSPHG [2]) derived from L. Tithonian reef complexes elsewhere in S. Germany fully six exhibit the 'fine' phenotype. The remainder is made up of
three 'coarse' and two 'intermediate' phenotypes. Gemmel laro and Di Blasi (1874) record seven specimens of Ch . (Ch.) textoria from contemporaneous coralliferous facies in Sicily of which six exhibit the 'coarse' and one the 'intermediate' phenotype. Военм (1883) records 60 representatives of the 'coarse' phenotype from U . Tithonian reef limestones at Stramberg. Only one example of the 'intermediate' (BSPHG) and none of the 'fine' phenotype are known from this horizon and locality. In other Tithonian reef facies in Languedoc (Yin, 1931) and the Maritime Alps (Kilian and Gufbhard, 1905) Ch. (Ch.) textoria is represented solely by the 'coarse' phenotype. However in Isère (Faure-Margufrit, 1920) the 'fine' phenotype seems also to be present.

Staesche (1926) reports common examples of the 'coarse' phenotype from the Brenztaloolith, an oolite passing laterally into coral/Diceras facies in the L. Tithonian of S. W. Germany. A single specimen from the 'Portlandian' of the Yonne (Dechaseaux, 1936) is the only record of Ch. (Ch.) textoria from any horizon in the Jurassic where the associated fauna (in this case an abundance of Cyrena and Corbula [Arkele, 1956]) is indicative of reduced salinity.

8. INTERPRETATION OF ECOLOGY

The strong correlation, apparent from Section 7, between the occurrence of the 'coarse', 'intermediate' and 'fine' phenotypes and the existence of respectively reefs, non-reefal arenites and argillaceous sediments is the basis for considering that the majority of the variation exhibited by Group 3 (p. 161) is ecophenotypic and is concordant with the view that all members of Group 3 belong to the same species, Ch . (Ch. textoria. The lack of a strict phonotype facies correspondence does not necessarily weaken the grounds for this dual hypothesis since there is no reason to suppose that the boundaries of the phenotypes, arbitrarily defined at the outset, should agree perforce with the limits of variation in each facies.

The relatively large number of 'intermediate' phenotypes at Neuburg may merely reflect the development of inter-reef arenites while the high proportion of 'fine' phenotypes from other reef complexes in S. Germany may simply reflect the development of inter-reef argillites. It is also not unreasonable to suggest that the numerous examples of the 'coarse' phenotype in the Brenztaloolith are derived from nearby reefs. However, derivation from reefs is an implausible explanation for the high proportion of 'coarse' phenotypes in the Aalenian of Lorraine. The nearest reefs are apparently some 250 km away, in Nièvre (Arkell, 1956). Furthermore the exclusive occurrence of the 'coarse' phenotype in the Bradford Abbas Fossil Bed is not matched by the presence of a reefderived fauna. Similarly there is no evidence of nearby sandgrade sediments to explain the exclusive occurrence of the 'intermediate' phenotype in the Baden Beds. It may be however that some environmental variable which is itself only loosely related to sedimentary facies is the real determinant of the phenotype adopted by Ch. (Ch.) textoria. Thus, until such time as their environments are more fully characterised and shown to be indistingushable from those of sediments containing the 'normal' phenotype for the facies, these few exceptions imply no need to assume that morphology is not con-
trolled by the environment nor do they require rejection of the single species hypthesis advanced on p. 161.

An example illustrating the need for detailed facies analysis is provided by the reef-like stuctures at St. Aubin, colonised by examples of $\mathrm{Ch} .(\mathrm{Ch}$.) textoria exhibiting the 'coarse' phenotype. The vertical elongation of the sponge masses suggests that an upstanding framework existed and since such was undoubtedly the case in most coral accumulations containing the 'coarse' phenotype it is tempting to attribute the development of the 'coarse' phenotype to this factor. However, closer analysis of the sediments at St. Aubin indicates that the sponge masses had a relief of no more than a few centimetres above the sea bed and that their vertically elongated shape is the result of upward growth to keep pace with sedimentation (T. J. Palmer, pers. comm., 1978; see also T. Palmer and Fursich [1981]). It therefore seems more likely that the development of the 'coarse' phenotype is due to growth in a partially enclosed habitat (see Section 9). This explanation incidentally also obviates the need to make the assumption, implicit thus far but possibly invalid in the cases of the Ringstead and Campagnettes Coral Beds, that coral accumulations which themselves had little palaeo-relief but which contain the 'coarse' phenotype of Ch. (Ch.) textoria were derived from unexposed structures of genuine reefal dimensions.
The fact that in roughly contemporaneous samples from each of the Sinemurian and Toarcian, individuals with the 'fine' phenotype attain a larger size than those with the intermediate phenotype, provides strong support for the view (see p. 163) that variation in the number of plicae is an adaptive result of developmental flexibility. Tho only case where stunting may yet be invoked is for the very small, finely ornamented and questionably conspecific specimens from the L. Oxford Clay. Here the small size and low diversity of the associated benthic faunal elements (Dupf, 1975) suggests that conditions were unfavourable for growth, probably as a result of low oxygen tension.

The absence of Ch. (Ch.) textoria from deep water pelagic limestones in the M . and U. Jurassic of the peri-Mediterranean region indicates that soupy substrates were not acceptable. However, the occurrence of the species in the U. Toarcian of Swabia, where the reduced density and diversity of the benthic fauna is probably the result of sediment instability, signifies at least some tolerance in this direction.

Apart from restrictions imposed by soft substrates, low oxygen tension and reduced salinities $C b$. (Ch.) textoria seems to have been a remarkably eurytopic species. However, facies which were colonised at one time were not always occupied at another.

The absence of the species from reefal facies in the U. Pliensbachian of Morocco may perhaps be explained by competitive inferiority to the essentially Tethyan bivalves Pseudopecten (Ps.) dentatus, Ps. (Ps.) veyrasensis, Lithrotis and Pachyrisma which occur there.

The invocation of competitive inferiority, in this case to Radulopecten vagans and R. fibrosus, also goes a long way towards explaining the localised distribution of Ch. (Ch.) textoria in suitable shallow water facies at later horizons in the Jurassic. The rarity of the species in anything but coralliferous
and spongiferous deposits in the Bathoman is matched by a corresponding abundance of R. vagans while the rarity of Cb. (Ch.) textoria in Callovian sands and L. Oxfordian biosparites in Yorkshire, some M. Oxfordian oolites and hiosparites in Oxfordshire, and in the M. and U . substages of the Oxfordian in Dorset is paralleled by the frequent occurrence of R. fibrosus. However, the restricted occurrence of Ch . (Ch.) textorat in U. Jurassic argillaceous sediments, which contrasts markedly with its even distribution in such theces in the Lias, is not readily explicable by a competitive reaction and seems to imply an evolutionary reduction in tolerance. It is tempting to relate this to the species population size bottle-neck which must have accompanied the reduction in geographic range and patchy distribution of $\mathrm{Cb},(\mathrm{Cb} . /$ textoria in the Toarcian and Aalenian (see Sections 5, 6).
The rarity of the species in U . Pliensbachian ironstones in England and simitar facies in the Aalenian of England and Germany cannot be explained by competitive inferiority or an evolutionary reduction in tolerance since almost identical sediments with a comparable fauna in the Sinemurian of England and the Toarcian and Aalenian of France contain numerous examples of $\mathrm{Ch} .(\mathrm{Cb}$.) textoria. Neither can these factors be invoked to account for the absence of the species from U. Pliensbachian sands in England since comparable facies were colonised by the species in the Sinemurian and Callovian. At present no alternative explanation for these anomalous absences is available. Likewise no plausible explanation can be offered for the lack of Cb . (Cb .) textoria in coral patch reefs at La Rochelle. An appeal to the exceptionally high density of these reefs, such as has been made to aecount for the corresponding rarity of the reef-inhabiting species Spondylopecten subspinosus (see p. 88) is ruted out by the fact that Cb. (Ch.) uvtomba occurs abundantly in similarly dense structures at Malancourt.

Disregarding those times when the lack of a particular phenotype is merely the result of the inability of Cb . (Cb .) textoria to colonise the relevant facies (see above) the rarity of the 'coarse' phenotype in the L. Jurassic and Callovian, of the 'intermediate' phenotype in the L. Pliensbachian and of the 'fine' phenotype in the M. Jurassic can be attributed to the poor development of respectively 'reefs', non-reefal arenites and argillaceous sediments at these times. The lack of the "intermediate' phenotype in the Oxfordian of the Yonne has yet to be explained. Appropriate facies were apparently well developed (Megvien et al., 1970).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch of Cb. (Ch.) textoria indicates that the species was byssally attached for at least the earlier parts of ontogeny. The maximum height of 93.5 mm (GPIT 2-92-3) in the 'coarse' phenotype is comparable to that in the close morphological analogue Gloripallium pallium, a Recent species which remains hyssatc beneath coral heads throughout ontogeny (Waller, 1972b). The maximum height of 80 mm (YM 570) attained by the 'intermediate' phenotype is not approached by any Recent morphological analogue although Ch. varu, an ecological analogue, is known to reach a height of 63.5 mm (Tebble, 1966) and to remain byssate throughout ontogeny (Soemodihardjo, 1974). The maximum height of 73.5 mm in the 'tine' phenotype is
exceeded by the Recent morphological analogue. Ch. islandica (Wiborg, 1963) but it is not clear whether byssal attachment is maintained at these sizes.

The reduced convexity and ornament of the right valve in Ch. (Ch.) textoria is paradigmatic for tight fixation during at teast some periods in life.

All three of the above analogues are reported to be capable of swimming although Ch. islandica seems to be more proficient than the others.

The larger plical amlitudes of $C h$. (Ch.) textoria in organic build-ups almost certainly conferred greater strength on the shell and may therfore have been developed as part of a 'siege' policy towards predators. The more strongly developed comarginal lamellae on the left valve could have contributed to such a policy by gripping the substrate and preventing extraction from crevice type microhabitats, in much the same way as short spines prevent extraction of the Recent species Ch . dieffenbachi from sponges (Beu, 1966). The low plical amplitudes, smaller comarginal lamellae and lower H/UA ratios of Ch . (Ch.) textoria in argillaceous sediments would have increased streamling and thrust/weight ratio, and hence swimming ability, and may therefore have been developed in line with a 'fugitive' policy towards predators. It is however difficult to account in these terms for the development of an intermediate morphology in arenaceous facies save as a means of facilitating a joint 'siege'/"fugitive' policy. Indeed, while detracting from a 'fugitive' policy, the relatively large comarginal lamellae of forms from arenaceous compared to argillaceous facies could have done nothing to enhance a 'siege' policy in the lack of an enclosed habitat. Moreover there is no a priori reason, except perhaps in the case of organic buildups, why different policies towards predators should have been adopted in each facies. A completely different order of explanation for the relation ship between phenotype and facies in Ch. (Ch.) textoria may therefore be required. Camouflage, relating to the 'grainsize' of the substrate, seems the most likely alternative.

10. ORIGINS AND EVOLUTION

Since C b (C b.) textoria is known from the lowest zone in the Jurassic its origins probably lie in the Triassic. Two specimens (BM unnumbered; L705, Pl. 8, Fig. 4) from the Muschelkalk of S.W. Germany appear to be within the phenotypic range of $\mathrm{Ch} .(\mathrm{Ch}$.$) textoria and may therefore in-$ dicate that the species was in existence in the M. Triassic. Stafsche (1926) has suggested that Cb. reticulata (Schluthfin), a species from the same horizon, may have been the ancestor while Dfchaseaux (1936) has proposed 'Pecten' tenuistruatus MONsTER for the same role. The latter author cites two species from the Cretaceous, Cb. Goldfussi (Deshayes) and Ch. Archiaciama (D'Orbigny), as possible descendants of Cb. (Cb.) textoria.
Maximum height appears to undergo a random oscillation from the Sinemurian (53 mm) to the L. Pliensbachian (73.5 mm) to the U. Pliensbachian (88 mm) to the Toarcian (73.5 mm) to the Aalenian (62 mm) to the Bajocian (74.5 mm) to the Bathonian (50 mm) to the Callovian (67 mm) to the Oxfordian $(82 \mathrm{~mm}$) to the Kimmeridgian (72 mm ; Dollfus, 1863) to the Tithonian (93.5 mm); GPIT 2-92-3).

Text fig. 158: Chlamys (Ch.) valoniensis - height/length.

Chlamys (Chlamys) valoniensis (Defrance 1825b)
Pl. 9, Figs. 1-6; text figs. 158-166

Synonymy

1825 b Pecten Valoniensis sp. nov; Defrance, p. 507, pl. 22, fig. 6.
? 1838 Pecten lugduntensis sp. nov; Michlin in Ley. MERIE, p. 346, pl. 24, fig. 5.
1838 Pecten Valoniensis Defrance; Leymerie, p. 368, pl. 24, fig. 6.
? $\mathrm{pv}^{*} 1851$ Pecten acutauritus sp. nov; SCHAFHAUTL, p. 416, pl. 7, fig. 10.
? 1855 Pecten dispar sp. nov; Terquem, p. 323, pl. 23, fig. 6.
v* 1858 Pecten cloacinus sp. nov: Quenstedt, p. 31, pl. 1, figs. 33, 34.
$\mathrm{v}^{*} ? 1858$ Pecten disparilis sp. nov; Quenstedt, p. 47, pl. 4, figs. 8, 9.
1860 Pecten Falgeri Merian; Stoppani, p. 76, pl. 14, fig. 3.
? 1860 Pecten janiviformis sp. nov; Stoppani, p. 76, pl. 14, figs. 4-6.
? 1860 Pecten aviculoides sp. nov; Stoppani, p. 77, pl. 14, fig. 7.
? 1860 Pecten barnensis sp. nov; STOPPANi, p. 78, pl. 15, fig. 2.
? 1860 Pecten Winkleri sp. nov; Stoppani, p. 78, pl. 15, fig. 4.
1864 Pecten valoniensis Defrance; Dumortier, p. 58, pl. 9, figs. $1-6$, pl. 10, figs. $1-3$.
(?) 1865 Pecten dispar Terquem; Terquem and Piftte, p. 103.
(?) 1865 Pecten lugdunensis Michelin; Terquem and Piette, p. 104.
1866 Pecten Falgeri Merian; Capellini, p. 479, pl. 5, figs. $1+19$.
? 1866 Pecten avzculoides Stoppani; Capelinni, p. 480, pl. 5, figs. 20-23.
? 1866 Pecten janiriformis Stoppani; Capellini, p. 480, pl. 6, figs. 1-3.
Pecten Etheridgit sp. nov; TAWNEY, p. 81, pl. 3, fig. 4.
v* 1866 Pecten Suttonensis sp. nov; TAwney, p. 81, pl. 3, fig. 3.
1868 Pecten valoniersis Defrance; Jaubert, p. 260.
1878

1886 Pecten valoniertsis Defrance; Winkler, p. 31.
1903 Pecten (Chlamys) valoniensis DEFRANCE; Bistram, p. 36, pl. 3, fig. 3.
Pecten (Chlamys) dispar Terquem; Bistram, p. 36, pl. 3, fig. 3.
? 1903 Pecten (Chlamys) Falgeri Merian; Bistram, p. 37, pl. 3, fig. 1
(?) 1904 Cblamys cf. dispar (Terquem); Cossmann, p. 504.

1905 Pecten valoniensis Defrance; H. Allen, p. 172
1907 Pecten (Chlamys) valoniensis Defrance; Joly, p. 24.
(?) 1907 Pecten (Chlamys) dispar Terquem; Joly, p. 75.
1909 Pecten (Chlamys) Valontensis Defrance; Trauth, p. 91.
1925 Pecten cf. valoniensis Defrance; Dubar, p. 257.
v 1926 Chlamys acutaurita (SChafhautl); Staesche, p. 27, pl. 2, fig. 4.

1926 Chlamys valoniensis Defrance; Roman, p. 105.
1929 Pecten (Chlamys) valoniensis DEFRANCE; LAN QUINE, p. 60.
1929 Pecten (Chlamys) janiriformis Stoppani; LaNQUINE, p. 60, pl. 1, fig. 4
(?) 1929 Pecten (Chlamys) Falgeri Merian; LanQuine, p. 60.

1936 Pectern(Chlamys) Valomensss Difrance; DfechasfaUX, p. 27.
(?) 1936 Pecten (Chlamys) dispar Terquem; Dechaseaux, p. 27.

1945 Chlamys valoniensis (DIFRANCE); VECCHIA, p. 6.
(?) 1945 Chlamys falgeri (MERIAN); V ECCHIA, p. 7.
1950 Cblamys valoniensis (Defrance); Roman, p. 25.
? 1951 Pecten sp; Troedssun, p. 140.
1953 Chlamys valomensis (DfFrance); Mouterde, pp. 311, 313, 337.
1968 Chumys idaloniensis (Defrance); WOBBER, p. 306.

1973 Chlamys (Chlamys) dispar (Terquem); Lentini, p. 24, pl. 14, figs. 8, 9. ?pl. 14, fig. 10; pl. 15, figs. $1,2,4,5$.

1975 Pecten achteaumitus SChaffhautl; Morbi y, text fig. 2.

The type material of Pecten Valoniensis DF. france 1825 b , p. 507 , pl. 22 , fig. 6 (originally housed in Caen, France) was destroyed in the Second World War. Mr. P. Hodges (University College of Swansea) has obtained topotype material from the Calcaire de Valognes (Hettangian) of Normandy with the intention of designating a neotype.

Texi fig. 159: Cblamys (Cb.) ralonensts - height/umbonat angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

None given.

2. DIAGNOSIS

Distinguished from both Ch. (Ch.) pollex and Ch. (Ch.) textoria by the lack of ornament on the plicae.

3. DESCRIPTION

Dise sub-ovate, higher than long, early in ontogeny, becoming sub-orbicular (text lig. 158) near maximum height of 77 mm (ENSM). Umbonal angle variable (text fig. 159), increasing during ontogeny to produce slightly concave dorsal margins. Disi flanks moderately high and ornamented with vertical striae.

Slightly inequilateral, posterior sector somewhat larger; inequivalve, left valve moderately convex, right valve almost Flat.

Intersinal distance greater in left valve than right, increasing at a decreasing rate in both (text figs. 160, 161). Depth of byssal notch variable, moderate to large (text fig. 162).

Auricles well demarcated from dise, approximately equal in size. Anterior auricles meeting hinge line at an acute angle; posterior auricles meeting hinge line at an obtuse angle. Anterior auricle of right valve meeting disc at an acute or right angle; remaining auricles meeting disc at an acute angle. Anterior auricles bearing 4-6 radial costae.

Height of anterior auricle and lengh of anterior hinge increasing at a markedly decreasing rate (text figs. 163, 164). Length of posterior hinge increasing with similar but less marked allometry (text fig. 165).

Text fig. 160: Chlamys (Ch.) valomensis - intersinal distance on left valve/length.

Text fig. 161: Chlamys (Ch.) valoniensis - intersinal distance on right valve/length.

Both valves bearing a variable number of radial plicae (Pl. 9, figs. 1-6), increasing in number by intercalation from between 20 and 30 early in ontogeny. Right valve with $31-36$ at $L: 20$, about 39 at $L: 40$, about 49 at $L: 60$, up to a maximum of 52 at $\mathrm{L}: 67.5$ (ENSM). Left valve with $36-45$ at $\mathrm{L}: 20,44-65$ at $\mathrm{L}: 40,52-72$ at $\mathrm{L}: 60$, up to a maximum of 79 at $\mathrm{L}: 68$ (ENSM).

Shell thickness moderate.

4. DISCUSSION

The original figure of 'Pecten' Valomensis Defrance is a poor reproduction of an internal view of a left valve. Metric proportions (1) plot within the range of the species described in Section 3 and Leymerif (1838) and Dumortier (1864), both French authors who may have had access to the type material, have applied the name to figured specimens which undoubtedly belong to the latter species. Bearing this in mind and the

Text fig. 162: Chlamys (Cb.) valonenses - depth of byssal notch/length.

Text fig. 163: Chlamys (Cb.) valoniensis - height of anterior auricle/length
fact that the horizon of derivation (Caleaire de Valognes) is one from which numerous examples of the species described in Section 3 have been recovered (see Section 7), Dffraver's name can be confidently applied as senior synonym to the latter species, despite the fack of diagnostic features in the original figure. Mr. P. Hodees will shortly be designating a neotype (see above).

The original figure of ' P.' lugdunensis Michelin is very reminiscent of Pseudopecten (Ps.) equivalvis (q. v.). However, Dumortifk (1864), who appears to have examined the type material, has stated that Micheliv's species is in fact equivalent to $C h .(C h$.$) zaloniensis and this view has been taken by$ hater authors (c. g. Stafschf, 1926) who may also have examined the type material. The anomalously low number of plicae in the right valve (25 at $\mathrm{L}: 45.5$) and the high $\mathrm{I}_{\mathrm{R}} / \mathrm{L}(2)$ of the original figure in comparison to $\mathrm{Ch} .(\mathrm{Cb}$.) zuloniensis might be the result of respectively, preservation as an internal mould and inatcurate illustration. In view of the somerwhat
equivocal position of Michflives species, Tfreleru and Piet. Tt's (1865) unillustrated record of 'P.' litgdunensis can only tentatively be placed in synonymy.
The original figure of ' P.' achturitus Schafhautl seems to depict an abraded specimen of Cb . (Ch.) valoniensis and what is apparently one of Schafhauti's syntypes (BSPHG; AS IX 42; Pl.9, Fig. 3) undoubtedly belongs to the latter species. Metric proportions of the original figure (3) are inseparable from Cb. (Ch.) valoniensis.
The original figure of ' P.' dispar Terquem depicts a right valve with 41 plicae at $L: 42$ which has resemblances to both Ch . (Ch.) valoniensis and Ch . (Ch.) textoria. The specimen referred to Terquev's species by Bistran (1903) undoubtedly belongs in Cb. (Ch.) valoniensis and all but one (pl. 14, fig. 10, which has imbricate lamellae and is thus closer to Cb . (Ch.) textoria) of LI vitiv's (1973) examples of Ch . (Cb.) dispar are similarly referable. However, in view of the fact that Terquevi's original figure has an abnormally high I_{L} / L and
$\mathrm{AH} / \mathrm{L}(+)$ some doubt must remain as to his hypodigm until the type material is located. With the possibility of confusion unillustrated records of Terquem's species in Terquem and Piette (1865), Cossmavn (1904), Joly (1907) and Dechaseaux (1936) can only tentatively be placed in synonymy.

It has proved impossible to trace the original reference to ' P.' Falgeri Merian. Specimens figured under this name by Sroppani (1860) and Capellini (1866) are clearly representative of Ch. (Ch.) valoniensis but Bistram's (1903) figure bears some resemblance to Pseudopecten (Ps.) equivalvis. It is not clear which, if any, of these authors has examinet the type material so the position of Merian's species is uncertain. Consequently unfigured records of his species in LaNquine (1929) and Vecchia (1945) can only be provisionally synonymised.

The position of ' P.' janiviformis STOPPANI is also in doubt. Although the original figure is available and resembles Ch. (Ch.) valoniensis, Capellini (1866), who worked in the same field area (N .1 Italy) as Stoppani and who may have examined the latter's type material, has applied his specific name to specimens which are closer to Ch. (Ch.) textoria. Whether or not they correspond to the original hypodigm for ' P.' janiviformis, specimens referred to this species by LaNQuINE (1929) undoubtedly fall within the present author's concept of Ch. (Ch.) valoniensis.

Capelini has also applied ' P.' aveculoides Stoppani, a species founded on a fragment resembling Ch. (Ch.) valoniensis, to a specimen which has closer affinities with Ch. (Ch.) textoria. With this uncertainty over the position of Stoppan's species 'P.' barnensis and ' P.' Winkleri, both of which show similarities to Cb . (Cb.) valoniensis, are best treated as only provisional synonyms.

The sole observed syntype of ' P.' cloacinus Quenstedt (GPIT 2-1-33; Pl. 9, Fig. 5) is indistinguishable from Ch . (Ch.) valoniensis by the number of plicae on the left valve (44 at $L: 36$) and by metric proportions (5). The number of plicae in 'P.' Suttonensis Taw'Ney (sole observed type, IGS 7830; Pl. 9, Fig. 4) and 'P.' Uhligi Gemmfllaro and Dı Blasi has not been measured but appears to be within the range of $C h$. (Cb.) valoniensis of comparable size. Metric proportions (6 and 7 respectively) are indistinguishable from the latter species.
'P.' sp.; Troedsson was compared with Ch. (Ch.) valoniensis and in view of the horizon of derivation (Rhaetic) it seems very likely to be a representative of this species.

The affinities of 'P.'disparilis Quenstedt and 'P.' Etheridgii Taviney are discussed under Camptonectes (C.) subulatus.

Text fig. 164: Cblamys (Ch.) valoniensis - anterior hinge length/length.

5. STRATIGRAPHIC RANGE

Cb. (Ch.) valoniensis is first recorded from the L . Rhaetic Westbury Formation of Glamorgan and Gloucestershire, where it is common. In the U. Rhaetic Lilstock Formation of the same area it is rare but records from the 'Rhaetic' of Lombardy (Stoppani, 1860), Spezia (BM L14938), Provence (Lanquine, 1929), the Pyrenees (Dubar, 1925), Belgium (JoLy, 1907) and Swabia (GPIG, GPIT) may include specimens from equivalent horizons as also may records from the 'Rhaeto-Lias' of Spezia (Capellini, 1866) and Lombardy (Vecchia, 1945). The species occurs almost throughout the type section of the Rhaetian in the Kendelbach Gorge, Austria (Morbey, 1975).

In the Jurassic Ch. (Ch.) valomensis is known from the Planorbis zone (Hettangian) in the Rhone Basin (Dumortier, 1864; Roman, 1926), N. Italy (Bistram, 1903) and S. Wales (Wobbfr, 1968). 'Hettangian' records from S. France (Leymerie, 1838; Jaubert, 1868; Roman, 1950), E. France (Dechaseaux, 1936) and N. W. France (Defrancf, 1825b) probably also stem from this zone. The species is known from the Angulata zone of Bavaria (Winkler, 1886) but specimens recorded by Terquem and Piette (1865) from this horizon and from the Sinemurian in E. France are only possibly conspecific (see Section 4). There is however no reason to doubt the conspecific status of at least some of the specimens recorded by Dechaseaux (1936) from the Sinemurian of Lorraine. Since the latter is the latest stage-defined record of $C b$.

Texr fig. 165: Chlomys (Cb.) valonienss - posterior hinge length/length.
(Cb.) valomensts it is doubtful whether ' L . Lias' records in Gemafllaru(1878) and Trauth (1909) include any specimens from the L. Pliensbachian.

6. GFOGRAPHIC RANGE

Ch. (Ch.) adoniensis occurs widely in Europe (text (ig. 166) but elsewhere is known only from one questionably conspecific specimen (BM L72864) Irom Iran.

7. DESCRtPTION OF ECOLOGY'

In the Westbury Formation (L. Rhactic) Ch. (Ch.) valoniensis occurs most abundantly in thin limestones containing numerous examples of the bivalves R batatacula contorta and Placanopsis alpraa. It is however also found in carbonaceous and pyritous shales containing, in addition to R. contora، and Pla. alpina, Eotrapezium, Lyriomorphia, Protocardia, Tutcheria and the gastropod 'Natica' (INiney-

Conk, 1974). Ammonites are absent throughout the formation and brachiopods, bryozoa, crinoids and corals are rare. In the overlying Lilstock Formation, where Ch. (Ch.) valoniensis is rare (D. Jones, pers. comm., 1978) the fauna is even more reduced in diversity with Liostrea, Modiolus and Plagiostoma the only important molluscan elements.

The number of specimens involved in other Rhaetic records is not clear but the species may well be common in N. Italy (see Sections 4, 5). The maximum height attained in the Rhaetic is 63.5 mm (BM 50031).

In the Hettangian of Glamorgan Ch . (Ch.) valoniensis is common in nearshore lithoclast sands containing numerous bryozoa, brachiopods, and corals but few ammonites (WOBBFR, 1968). The species also occurs in thin clay interbeds but passing eastwards into a continuous offshore argillaceous sequence containing a more diverse ammonite and bivalve fauna, it becomes progressively rarer.

Text fig. 166: Chlamys (Ch.) V'aloniensis - European distribution.

Ch. (Ch.) valoniensis is common in the Gresten Beds (L. Lias, Austria); littoral sands, shales and limestones bordering the Palacozoic massif of Bohemia and containing numerous examples of Cb . (Ch.) textoria and $P_{\text {seudopecten }}$ (Trauth, 1909). The species also occurs commonly ($\mathrm{H}_{\text {max }}$: 77, ENSM) in the Calcaire de Valognes (Hettangian, Normandy) which may represent a similar littoral facies developed at the margins of the Brittany massif. Cly. (Ch.) pollux is an associated faunal element (Dumortier, 1864).
Dechasfaux (1936) reports numerous examples of Ch. (Ch.) valoniensis from nearshore sands in the Hettangian of Lorraine.
The species is not known to be common elsewhere in the L. Lias but the number of records from the Hettangian of S. France (see Section 5) suggests that it is by no means rare in the latter region. The stage is usually developed in limestones and marls overlying the Palaeozoic basement. Ch. (Ch.) polIux and Pseudopecten are also recorded (Roman, 1950; Mouttrdf, 1953).
There are no records from the Hettangian of Portugal where the reduced diversity bivalve fauna (dominated by Isocyprina and mytilids) is indicative of abnormal salinity (Bobm, 1901). Similar facies in the Hetrangian of N. W. Germany are also lacking in Cl . (Ch.) valoniensis (Huckrifde, 1967).

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that Ch. (Ch.) valoniensis favoured nearshore environments although in such situations both clay-grade and sand-grade substrates were colonised. Anaerobic conditions (pyritic and carbonaceous horizons in the Westbury Formation) were apparently tolerable but markedly abnormal salinities (Lilstock Formation; Hettangian of Portugal and N. W. Germany) were not. The reduced diversity fauna of the Westbury Formation may be indicative of slightly reduced salinity (D. Jovas, pers. comm., 1978) so the common occurrence of Ch. (Ch.) valoniensis could imply a measure of euryhalinity. However the absence of at least ammonites could merely be due to the shallow water depositional environment thus eurytopy in Ch. (Ch.) valoniensis may extend no further than a tolerance of a variety of fully marine nearshore situations.
The fact that in the Westbury Formation Ch . (Ch.) valoniensis occurs most abundantly at horizons with the lowest faunal diversity is suggestive of an opportunistic adaptive strategy (Lfvinton, 1970).

Co-occurrence of Ch . (Ch.) valoniensis and the closely related species Ch . (Ch.) pollux indicates that even if there was any tendency for the species to compete, it was suppressed by niche partitioning. The latter may have been effected by the use of different byssal attachment sites (see Section 9 and p. 187).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch and low convexity right valve of $C h$. (Ch.) valoniensis are adaptive for tight byssal fixation. However ontogenetic decrease in the relative length of the anterior auricle would have progressively reduced the
efficiency of the byssus so it is doubtful whether the species could have remained attached in the adult stage.

The great majority of extant byssally attached pectinids apply the byssus to a hard substrate and there is no reason to suppose (cf. Ch. (Ch.) pollux) that Ch. (Ch.) valoniensis dif fered from this practice.

The relatively greater convexity of the left valve in Ch. (Ch.) valoniensis is paradigmatic for swimming. Ontogenetic increase in the umbonal angle probably served to maintain efficient swimming in the adult stage.
Intercalation of plicae is paradigmatic for the maintenance of shell strength and stiffness with increasing size. However, in view of the fact that many much larger pectinids do not exhibit plical intercalation it must be doubred whether this was its sole function in Ch . (Ch.) valoniensis.

10. ORIGINS AND EVOLUTION

No obvious ancestors for Ch. (Ch.) valoniensis present themselves in the Triassic.

Within the species there appear to be no phyletic trends apart from an increase in maximum height from the Rhaetic $(63.5 \mathrm{~mm})$ to the Hettangian (77 mm).

The post-Planorbis zone decline of Ch . (Ch.) valoniensis is approximately correlated with the rise of Ch . (Ch.) textoria and Pseudopecten. However, the possibility of a causal connection in terms of competition is rendered unlikely by the fact of the co-occurrence of the former with each of the latter.

> Chlamys (Chlamys) pollux (D'Orbigny 1850)
> Pl. 9, Figs. 7, 8; text fig. 167
> Synonymy
> v* 1850 Pecten Pollux sp. nov; D'Orbigny, v. 1, p. 220 (Boule, 1907. v. 2, p. 267, pl. 23, figs. 16, 17).
> 1864 Pecten Pollux d'Orbigni; Dumortifr, p. 65. pl. 10, figs. 11, 12, pl. 11, figs. 1-4.
> 1876 Pecten pollux D'Orbigny; TAte and Blake, p. 362.
> 1891 Pecten amphtarotus sp. nov; Di Stefano, p. 62.
> 1894 Pecten pollux d'Orbigny; WOODWARD, p. 360.
> non 1909 Pecten amphiarotus Di Stefano; Trauth, p. 90, pl. 2, fig. 17.
> 1936 Aequipecten pollux (D'Orbigny); Dechaseaux, p. 41.
> 1950 Chlamys Pollux (D'Orbigny); Roman, p. 25.
> 1953 Pecten pollux D'Orbigny; Mouterde, p. 311
> ? 1973 Cblamys (Aequipecten) amalthea (OPPEL); LEN Tini, p. 27, pl. 15, fig. 9 (non Oppel sp.).
> 1973 Chlamys (Aequipecten) cfr. Pollux (D'Orbigny); Lentini, p. 27, pl. 16, fig. 1.
> Lectotype of Pecten Pollux d'Orbigny 1850, v. 1, p. 220 designated herein; MNS 1591; figured Boule, 1907, pl. 23, fig. 16; H: 35, L: 31, $\mathrm{I}_{\mathrm{R}}: 17, \mathrm{~N}: 4, \mathrm{AH}: 12, \mathrm{PH}: 9, \mathrm{HAA}: 7$, PL: 24; Sinemurian, Pouilly (Côte d'Or). Paralectotype; MNS 1591A; figured Boule, 1907, pl. 23, fig. 17; also Sinemurian, Pouilly.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Très-belle expèce à grosses côtes inégales, dont quelquesunes sont porvues de très-longues pointes tubuleuses. Audessous de l'O. arcuata, à Pouilly (Côte d'Or).'

2. AMENDED DIAGNOSIS

Distinguished from both Cb . (Cb.) textoria and Ch . (Ch .) valoniensis by the presence of long tubular spines.

3. AMENDED DESCRIPTION

Shape essentially similar to Ch . (Ch.) valoniensis. Differing only by the somewhat larger H/UA, by the slight ontogenetic reduction in the relative size of the byssal notch and by the tendency for the anterior auricles to meet the hinge line at a right angle.

Both valves ornamented with between 22 and 27 (usually 24) rounded radial plicae. Those on right valve low, equal in size, and up to 50% bearing tubular spines up to 5 mm in length, set at intervals of about 5 mm (Pl. 9. Fig. 7). Those on left valve markedly unequal in size, 5-7 being larger and bearing robust tubular spines up to 10 mm in length, spaced at intervals of about 10 mm (Pl. 9, Fig. 8). Spines absent from both valves at shell heights below about 10 mm . Sulci equal in width to plicae; both traversed by closely spaced fine comarginal striae.

Hinge line of right valve bearing dorsally directed spines up to 5 mm in length, spaced at intervals of $2-3 \mathrm{~mm}$.

Shell thickness moderate. Maximum height 53 mm (BM L65791).

4. DISCUSSION

The two syntypes of 'Pecten' Pollux d'Orbigny are both right valves, one of which (MNS 1591) is well preserved while the other (MNS 1591 A) is somewhat abraded. The former is herein designated as lectotype. Although brief, d'Orbigny's
(1850) diagnosis and description could refer to no Sinemurian pectinid other than the species described in Section 3. There is consequently no doubt that the first taxonomically valid use of 'P.' pollux was in 1850 (see ICZN Opinion 126) and that therefore d'Orbigny's species is the senior synonym for the species described in Section 3.

Di Stefano (1891) provided no illustration of ' P.' amphiarotus but mention in the description of spines and unequal plicae leaves little doubt that the species (from the L. Lias) is synonymous with Ch. (Ch.) pollux. Trauth's (1909) misapplication of Di Stefano's specific name is discussed under Pseudopecten (Ps.) dentatus.

Since Lentini (1973) referred to 22 'ribs' in his description of Ch. ('Aequipecten') amalthea (Oppel) his use of this specific name is undoubtedly outside Oppel's (1858) hypodigm ($=$ Propeamussium (P.) pumilum). The figured specimen (from the L. Lias) appears to exhibit abraded spines and therefore may well be conspecific with Ch . (Ch.) pollux.

5. STRATIGRAPHIC RANGE

A few specimens of $C h$. (Ch.) polltex are known from the uppermost Trias of the N. Calcareous Alps (BSPHG). In Britain the earliest records of Cb . (Cb.) pollux are from the White Lias (\equiv pre Planorbis beds, lowermost Hettangian sensu Poole [1979]) of the Bristol area (BM L74405, L77279, L77312, L77313, L78402).

In Planorbis zone deposits Cb . (Ch .) pollux is known from a number of localities in England (Tate and Blake, 1876; Woodward, 1894) and is reported to be common in the Rhone Basin (Dumortier, 1864).

Roman (1950) reports common examples of Ch. (Ch.) polItxx from undifferentiated Hettangian in the Rhone Basin and Dumortier (1864), Mouterde (1953) and Dechaseaux (1936) refer to indeterminate numbers of 'Hettangian' specimens from respectively Normandy, the Rhone Basin and the E. Paris Basin.

Text fig. 167: Chlamys (Ch.) pollux - European distribution.

Sinemurian records are limited to seven specimens from the Rhone Basin (ENSM [5]; MNS 1591, 1591A) and indeterminate numbers of specimens from the Bucklandi zone of England (Woodward, 1894).

It is very doubtful whether 'L. Lias' specimens of $C h$. (Ch.) pollux (BM L1548; BSPHG; Di Stefano, 1891: ?LenTINI, 1973) are derived from horizons higher than the Sinemurian.

6. GEOGRAPHIC RANGE

Ch. (Ch.) pollux is unknown outside Europe. Within Europe the species accurs over a broad latitudinal range (text fig. 167) but is only known to be common in the Rhone Basin (Dumortier, 1864; Roman, 1950) and Sicily (Dı Stefano, 1891). This suggests a preference for warm waters (however see Section 8).

7. DESCRIPTION OF ECOLOGY

The common examples of Ch . (Ch.) pollux reported by Roman (1950) from the Hettangian of the Rhone are derived from marls containing the bivalves Ch . (Ch.) valoniensis, Pseudopecten (Ps.) dentatus, Plicatula, Plagiostoma and Cardinia together with crinoids and corals.

Specimens from the White Lias of the Bristol area (see Section 5) are derived from fine grained limestones and are sometimes associated with crinoid debris (e. g. BM L77279).

8. INTERPRETATION OF ECOLOGY

The limited available data suggests that Ch. (Ch.) pollux preferred low energy environments. The apparent rarity of the species in sediments indicative of such environments in N. Europe may be due to a dislike for relatively cool waters (see Section 6). It may however equally well be a consequence of the relative rarity of an, as yet unidentified, commensal organism (see Section 9).

The co-occurrence of C . (Ch.) pollux and the probable ancestor, Ch. (Ch.) valoniensis (also see p. 185), suggests that any competitive tendencies which the species may have had were suppressed by niche partitioning (see Section 10).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch and only moderate adult size ($\mathrm{H}_{\text {max }}$: 53) of Ch . (Ch .) pollux suggest that the species was byssally attached through most, if not all, of ontogeny. The low convexity of the right valve suggests that Ch . (Ch.) pollux was tightly fixed. The existence of spines on the right valve is non-paradigmatic for such a mode of life on hard substrates but is adaptive (providing additional purchase) for tight fixation on soft substrates. Since spines on the right valve and a large byssal notch are present in Ch . dieffenbachi, a Recent species which lives within sponges (BEU, 1966) it may be that Cb. (Ch.) pollux was tightly attached to this or some other group of soft bodied organisms.

[^3]energy and fairly firm substrates indicated by respectively, argillaceous sediments and a diverse associated epifauna, would have created no need for either of the above adaptations. Spines on the left valve could have served no useful purpose for reclining in either of the above contexts.

10. ORIGINS AND EVOLUTION

Ch. (Ch.) pollux is almost certainly a descendant of C. (Ch.) valoniensis from which it differs significantly only by the reduced number of plicae and the presence of spinose ornament. Since the adult number of plicae in Ch . (Ch .) pollux is roughly equivalent to the juvenile number in Ch . (Ch .) valonicnsis, Ch . (Ch.) pollux may be neotenous with respect to this character. The evolution of spinose ornament cannot be explained by heterochrony in the absence of ancestral allometry and suggests therefore that speciation may well have infolved changes in the structural genome as well as the regulatory changes implied by neoteny.

Since Ch. (Ch.) pollux appears to arise within the geographic range of Ch . (Ch.) valoniensis the possibility of sympatric speciation cannot be ruled out. However, since there is no evidence that $C h .(C b$.$) valoniensis ever attached itself to$ the soft-bodied organisms to which Ch. (Ch.) pollux was presumable restricted (see p. 185 and Section 9), the author can propose no means by which such sympatric speciation might have been effected (cf. Camptonectes (Camptochlamys) clathratus).

Within Ch. (Ch.) pollux the detection of any definite phyletic changes in morphology is precluded by the paucity of specimens available for study. Maximum height may undergo a decrease in the passage from the Hettangian (53 mm ; BM L65791) to the Sinemurian (35 mm ; MNS 1591).

Apart from the extinction of a host organism (see Section 9) no plausible deterministic explanation is available to account for the post-Sinemurian extinction of Ch . (Ch.) pollux.

Genus RADULOPECTEN Rollier 1911

Type species. OD; Rollifr 1911, p. 158; Pecten bemicostatus Morris and Lycett 1853, p. 10, pl. 1, fig. 16; Great Oolite (Bathonian), Minchinhampton, Gloucestershire.

DIAGNOSIS

Between 4 and 15 initial radial plicae, bearing comarginal lamellae at all stages of ontogeny on left valve but only in later stages of ontogeny or not at all on right valve

Stratigraphic range; Jurassic (Aalenian-Tithonian). Geographic range; Europe, Asia, Africa, ?North and Central America.

DISCUSSION

Since all the Jurassic pectinid species which come under the Treatise definition of Chlamys (see p. 161) but which do not belong to $C b$. (Chlumys) seem to form a monophyletic group they are usefully accorded a generic distinction from Chlamys. The name Radulopecten has been previously ap-
plied at the subgeneric level (e. g. Arkfll, 1931a; Cox, 1952; DUFF, 1978) to certain members of this group and it is herein adopted, with a revised diagnosis (see above), as the generic name for the complete group.

Within Radulopecter seven groups may be distinguished on the following basis:

1. Left valve lacking plicae early in ontogeny but bearing about 25 radial striae of which initially between 4 and $1+$ develop into equal sized plicae $(=R$. vagans $)$.
2. Left valve lacking plicae early in ontogeny but bearing about 40 radial striae of which initially about 15 develop into equal sized plicae ($=R$. vamuns).
3. Left valve lacking plicae early in ontogeny but bearing between 60 and 75 radial striae of which usually between 5 and 8 develop into equal sized plicae ($=R$. strictus).
4. Plicae present at earliest ontogenetic stages, increasing in number by intercalation. Usually one less plica on right valve than left; latter bearing between 10 and 13 equal sized originals ($=R$. fibrosus).
5. Plicae present at earliest ontogenetic stages, increasing in number by intercalation and accompanied by radial striac. Usually one more plica on right valve than left; latter bearing between 8 and 11 equal sized originals ($=$ R. scarburgensis).
6. Plicae present at earliest ontogenetic stages, rarely increasing in number by intercalation. 11 equal sized original plicae on left valve, 12 on right; ornamented with conical spines ($=R$. sigmaringensis).
7. Plicae arising early in ontogeny. Between 5 and 9 unequal initial plicae, rarely increasing in number by intercalation but accompanied by radial striae $(=R$. inequicostatus).
Since the stratigraphic ranges of Groups 1 and 2 have little or no overlap it is conceivable that the supposed evolution of the latter from the former occurred without splitting. However since the morphological distance between the groups is quite large and there appear to be no intermediates, the groups are treated as separate lineages for reasons of convenience. Similar reasoning applies to the separation of the undoubtedly related Groups 5 and 6.

Groups 4, 5 and 7 tend to be restricted to particular facies (respectively; arenaceous, argillaceous and coralliferous) and since there is considerable overlap in their ranges of variation it may be that they represent ecophenotypes of a single species as has been suggested for similarly facies-restricted forms assigned to Chlamys (Ch.) textoria. However, unlike the latter species, the features distinguishing the groups would have to have resulted from very early ontogenetic developmental flexibility. Since the author can envisage no way of testing for such developmental flexibility it seems preferable to treat the groups as separate species. In any case, at least for Groups 4 and 5 , there are considerable differences in geographaic distribution which are difficult to relate to facies and each group is occasionally found in the facies apparently appropriate to the other, so it is perhaps more likely that they represent separate species. Similar reasoning applies to Groups 2 and 3 where, for example, Buvignier's (1852) records suggest some morphological overlap.

Notable differences in the mean form of the ornament between the latest and earliest populations of Group 4 are attrib-
uted to phyletic evolution within a single species since there can be no doubt of direct relationship and there is nocom
ing evidence of the contemporaneous existence of twn acp.arate lineages (see p. 207). The latest (uppermost Oxfordian and Kimmeridgian) populations are characterised by the development of a larger umbonal angle (specimens marked with a glyph in text fig. 187) but this is clearly a simple reflection of the attainment of greater size.
Differences in the mean form of the ornament between earlier and later populations in Groups 1 and 5 can also be interpreted as the result of phyletic evolution within single species. Since however in Group 1 the difference in mean form results from a change in the relative proportions of two distinct ('striate' and 'non-striate') morphs there is here the possibility that the difference rellects a shift in the relative abundances of two quite separate species (see p. 192 for a refutation of this argument).

Radulopecten vagans (J. DE C. Sowerby 1826a)
Pl. 9, Figs. 9-33. ?Fig. 34; text figs. 168-176

Synonymy

v* 1826a Pecten vagans sp. nov; J. DE C. Sowerby, p. 82, pl. 543 , figs. $3,4,5$.
non 1833 Pecten vagans J. De C. Sowerby; Goldfuss, p. 44, pl. 89, fig. 8.
? 1839 Pecten vagans J. de C. Sowfry; Roemer, p. 29. 1839 Pecten vagans J. df C. Sowerby; Bean, p. 60.
v* 1850 Pecten Rhetus sp. nov; D'Orbigny, v. 1, p. 314 (Buule, 1912, v. 7, p. 92, pl. 2, fig. 20).
v*p 1850 Lema Nerma sp. nov; D'Orbigny, v. 1, p. 313 (Bucule, 1912, v. 7, p. 92, pl. 2, figs. 21, 22).
v 1850 Pecter vagans J. if C. Suwerby; D'Orbigny, v. 1, p. 314.

1852 Pecten ansoplearus sp. nov; Buvignifr, p. 23, pl. 19, figs. 31-35.
1852 Pecten fibrosus J. Sowerby; Quenstedt, p. 507. pl. 40 , fig. 43 (non J. Sowerby sp.).
1853 Pecten vagans J. De C. Sowerby; Morris and LyCETT, p. 8, pl. 1, figs. 12, 12a.
$\mathrm{v} * 1853$ Pecten peregrinus sp. nov; Morris and Lycett, p. 9, pl. 1, fig. 14.
v* 1853 Pecten bemicostatus sp. nov; MORris and Lycett, p. 10, pl. 1, fig. 16.

1858 Pecten vagans J. De C. Sowerby; Oppel, p. 491.
1858 Pecten bemicostatus Morris and Lycett; Oppel, p. 491.
? 1859 Pecten Thurmannz sp. nov; CONTEJfan, p. 315, pl. 23, figs. 10-12.
1860 Pecten vagans J. Di C. Sowerby; Coquand, p. 68.
non 1860 Pecten vagans J. De C. Sowerby; Damon, pł. 9, fig. 4.
v* 1863 Pecten Gruesbachi sp. nov; LYCETT, p. 31, pł. 33, figs. 6, 6a.
1863 Pecten maequicostatus Phillips; Lycett, p. 32, pl. 33, fig. la (non fig. 1; non Phillips sp.).
$v^{* *} 1863$ Pecten Rusbdenensis sp. nov; Lycett, p. 33, pl. 33, figs. 4, 4a-c.
$\mathrm{v}^{*} 1863$ Pecten Wollastonensis sp. nov; L.YCETT, p. 33, pl. 33, figs. 2, 2d-c.
1863 Pecten anisoplearus BUVIGNIER; LYCETT, p. 33, pl. 33, figs. 5, 5a.
1867 Pecten vagans J. de C. Sowerby; Laube, p. 10, pl. 1, fig. 10.

1867 Pecten bemicostatus Morris and Lycett; Laube, p. 11, pl. 1, fig. 15.

1869 Pecten bemicostatus Morris and Lycett; TerQUEM and Jourdy, p. 127.
1869 Pecten anomalus sp. nov; Terquem and Jourdy, p. 128, pl. 13, figs. 18-20, 20a.

1869 Pecten rusbdenensis Lycett; Terquem and Jourdy, p. 129.
non 1880 Pecten vagans J. De C. Sowerby; Damon, pl. 9, fig. 4.
v* 1883 Pectes intermittens sp. nov; Whidborne, p. 500, pl. 15, figs. 13, 13 a.
? 1886a Pecten samilus sp. nov; De Gregorio, p. 669, pl. 1, fig. 7.
? 1886c Pecten eglus sp. nov; De Gregorio, p. 10, pl. 4, figs. 13a, 13b.
1888 Pecten vagans J. De C. Sowerby; Schlippe, p. 131, pl. 2, fig. 5.

1888 Pecten bemicostatus Morris and Lycett; SchlipPE, p. 133, pl. 2, fig. 8.
1898 Pecten bemicostatus MORRIS and Lycett; Grep PIN, p. 128.
1900 Aequipecten fibrosus (J. Sowerby); E. Philippi, p. 98, text fig. 15 (non J. Sowerby sp.).

1906 Chlamys semicostata sp. nov; Cossmann, p. 3, pl. 1, figs. 6, 7, pl. 2, fig. 22.
1906 Chlamys rosimon (D'Orbigny); Cossmann, p. 4, pl. I, figs. 7-9 (non D'Orbigny sp.).
1910 Chlamys vagans (J. DE C. Sowerby); Lissajous, p. 360 , pl. 9 , fig. 8 .

1911 Pecten (Radulopecter) bemicostatus Morris and Lycett; Rollier, p. 158.
v 1916 Pecten of. anomalus Terquem and Jourdy; Paris and Richardson, p. 533, pl. 45, figs. 1a-d.
v 1916 Pecten vagans J. DE C. Sowerby; Paris and Richardson, p. 533.
non 1917 Pectenz vagans J. de C. Sowerby; Borissiak and Ivanoef, p. 33, pl. 4, fig. 6.
1917 Pectern bemicostata Morris and Lycett; Boris siak and Ivanoff, p. 35, pl. 4, figs. 1-5, 10, 11.
1923 Radulopecten vagans (J. DE C. SOwerby); Lissajous, p. 160.
1923 Radulopecter semicostatus (Cossmann); LissaJous, p. 160.
1923 Radulopecten Romani sp. nov; LissAjous, p. 162, pl. 30, figs. $4,4 \mathrm{a}, 4 \mathrm{~b}, 5,5 \mathrm{a}, 5 \mathrm{~b}$.
1926 Aequipecten vagans (J. DE C. Sowerby); StaeSCHE, p. 67.
1926 Chlamys vagars (J. DE C. Sowerby); ROMAN, p. 178.

1929 Pecten (Chlamys) vagans J. DE C. Sowerby; LaNQuine, p. 323.
1932 Chlamys vagans (J. de C. Sowerby); Douglas and Arkell, pp. 130, 131, 158.
v 1932 Chlamys cf, anisopleurus (Buvignier); DOUGlas and Arkell, pp. 130, 140.
v 1936 Aequipecten vagans (J. De C. Sowerby); Dechas eaux, p. 43, pl. 6, figs. 1, 2, 3, 9.

- 1936 Aequipectenvagans var. anomalus (Terquem and Jourdy); Dechaseaux, p. 44, pl. 6, figs. 5, 7, 8, 14.

1936 Aequipecten vagans var. hemicostatus (MORRIS and Lycett); Dechaseaux, p. 45.
v 1936 Aequipecten Rushdenensis (Lycett); Dechaseaux, p. 46, pl. 6, figs. 10, 11.
v 1936 Aequipecten cf. Romani (Lissajous); Dechas eaux, p. 47, pl. 6, fig. 12.
1936 Aequipecten anisopleurus (Buvignier); Dechasfaux, p. 49.
1940 Chlamys vagans (J. de C. Sowerby); Parent, p. 42.

1948 Chlamys (Radulopecten) bemzcostata (MORRIS and Lycett; Cox and Arkell, p. 12.
1948 Chlamys (Radulopecten) vagans (J. DE C. SOwERby); Cox and Arkell, p. 12.
1948 Chlamys (Radulopecten) anisopleurus (Buvignier); Cox and Arkeli, p. 12.
1948 Chlamys (Radulopecten) wollastonensis (LYCFTT); Cox and Arkell, p. 13.
1948 Chlamys (Radulopecten) griesbachi (LyCETT); Cox and Arkell, p. 13.
1948 Chlamys (Radulopecten) rushdenensis (LYCETT); Cox and Arkell, p. 13.
1950 Cblamys (Radulopecten) vagans (J. DE C. SowerBy); Channon, p. 246.
1961 Cblamys vagans (J. DE C. Sowerby); BarbuLESCU, p. 701.
$196+$ Chlamys (Rudulopecten) hemicostata (Morris and Lycett); J--C. Fischer, p. 17.
1971 Radulopecten vagans (J. DE C. Sowerby; Mauberge, pp. 25-28.
1971 Radulopecten vagans var. anonzalus (Terquem and Jourdy); Mauberge, pp. 25-28, 3 text figs.

Lectotype of Pecten vagans J. de C. Sowerby 1826a, p. 82, pl. 543, figs. 3, 4, 5 designated Arkell, 1931b, p. 437; BM 43319 (the original to J. de C. Sowerby's pl. 543, figs. 3, 4); Pl. 9, Fig. 31 herein; H: 41, L: 35; L. Cornbrash (Bathonian) fide Arkell (1931b), Chatley, Somerset. Paralectotype; also BM 43319 (the original to J. de C. Sowerby's pl. 543, fig. 5); Bradford Clay or Fuller's Earth (Bathonian) fide Arkell (193lb), Loscombe, Somerset.

Text fig. 168: Radulopecten vagans - height/length.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Rather convex, a little longer than wide; ribs 11, large, convex, decorated with large erect concave scales that are very close upon the right but distant upon the left valve; ears nearly equal, crossed by large scales.

Syn. P. sulcatus. Geol. Survey of the Yorkshire Coast, p. 233, t. 9, fig. 3. excl. Syn.

Text fig. 169: Radulopecten tragans - height of anterior auricle/ length.

Seldom above an inch and a quarter wide. It differs from the last ['Pecten' vimineus] by having only half the number of ribs, and in not having the regular concentric striae which appear between the ribs in that. When young the ribs are but a little raised, although the scales are then large: a few obscure rays sometimes appear between the ribs.

This is one of those few shells which appear in several strata: it is found in clay belonging to the oolite near Bath (fig. 5); in the Bath or Great Oolite at Hampton, Gloucestershire, and Bradford, Wiltshire; above the Oolite at Ancliffe, in the Cornbrash at Chatley (figs. 3 and 4), and in the Oolite Limestone at Malton.'

2. AMENDED DIAGNOSIS

Distinguished from R. varians by the smaller number of initial plicae, from R. strictus by the smaller number of radial striae, from R. inequicostatus by the relatively uniform size of the initial plicae and from all other species of Radulopecten by the existence of a non plicate phase early in ontogeny.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, increasing in size isometrically (text fig. 168) to a known maximum height of 50 mm (OUM J4821, BM L91533) but possibly reaching heights as great as 80 mm (see Section 7). Umbonal angle variable (text fig. 170), increasing only slightly during ontogeny. Disc flanks moderately high.

Equilateral, usually inequivalve with left valve more convex than right but all variations between latter and forms with right valve more convex than left. Convexity low - moderate in both valves. Intersinal distance greater in left valve than right, increasing with approximate isometry in both (text figs. 171, 172). Byssal notch depth variable, usually moderate (text fig. 173), increasing with approximate isometry.
Auricles well demarcated from disc; size variable (e. g. Pl. 9, Figs. 19, 33) usually moderate, anterior slightly larger than posterior. Posterior auricles usually meeting hinge line at 90°; anterior auricles meeting hinge line at 90° or less. Anterior auricle of right valve meeting disc at an obtuse angle; remaining auricles meeting disc at an acute angle. All auricles ornamented with comarginal lamellae.
Height of anterior auricle (text fig. 169) and lengths of anterior (text fig. 174) and posterior (text fig. 175) hinges variable but increasing with approximate isometry.

Text fig. 170: Radulopecten vagans - height/umbonal angle.

Text fig. 171: Radulopecten vagans - intersinal distance on left valve/length.

Text fig. 172: Radulopecten vagans - intersinal distance on right valve/length.

Ornament of right valve variable (e. g. Pl. 9, Figs. 23-25, 30). Between 4 and 14 low plicae, wider than sulci and increasing in number by splitting. Usually less than 4% but sometimes the major proportion of specimens from a given locality also bearing up to 50 (usually about 30) radial striae (see Section 4). All specimens bearing closely spaced comarginal striae, sometimes interrupted to form a decussate pattern. In late ontogeny of specimens with relatively high plicae, comarginal striae absent from sulci and raised into lamellae on plicae.

Ornament of left valve extremely variable (e. g. Pl. 9. Figs. 9-22, 26-29, 31-33), essentially consisting of 2 zones. Earlier ontogenetic stages exhibiting between 15 and 35 (MNO 2901 B), most commonly about 25 , radial striae crossed by comarginal striae which are sometimes interrupted to form a decussate pattern. Later ontogenetic stages characterised by the development of between 4 and 14 (MNP), most commonly 5 , radial striae into low plicae which are narrower than the sulci and bear variably spaced comarginal lamellae. Remaining radial striae rarely persisting and comarginal striae
becoming decussate or absent in the sulci. Further plicae added by intercalation to a maximum number of 16 (BM 65889), most commonly 9. Height of non-plicate zone extremely variable; from a few to 37 mm (BM L76308). Number of plicae at a given height extremely variable; 0-11 (GPIG) at $\mathrm{H}: 10,0-14$ (MNP) at $\mathrm{H}: 15,0-14$ (MNP) at $\mathrm{H}: 20,5$ (BM 66243) - 14 (MNP) at $\mathrm{H}: 25,6$ (MNP) -15 (BM 65889) at $\mathrm{H}: 30,7$ (MNO) - 16 (BM 65889) at H: 35. Geographically and stratigraphically separated samples tending, however, to have a characteristic mean and coefficient of variation for the number of plicae at each height (see Johvson, 1981).

Shell thickness moderate.
The author has presented elsewhere (JOHNSON, 1981) his reasons for considering the large range of variation described above to be the product of developmental flexibility within a single species.

Text fig. 173: Radulopecten vagans - depth of byssal notch/length.

4. DISCUSSION

As the earliest taxonomic species with type specimens within the range of the species described in Section 3 'Pecten' vagans J. DE C. Sowerby is the senior synonym for the latter. The lectotype (BM 43319 ; Pl. 9, Fig. $31 ; 1$) is a form in which plicae were introduced very early in ontogeny ('early developer') and has 11 plicae at $\mathrm{H}: 41$. J. de C. Sowerby indicates by synonymising ' P.' sulcatus Young and Bird with ' P.' vagans that he included forms which the present author places in Radulopecten fibrosus within his hypodigm for 'P.' vagans. Such forms are probably the basis for his record of ' P.' vagans from the Oxfordian (Malton Oolite), a horizon at which R. fibrosus is abundant but R. vagans (i. e. the species described in Section 3) is either extremely rare or absent (see Section 5). A similar inclusion of forms which are referable to R. fibrosus may account for Roemer's (1839) and Dechaseaux's (1936) records of J. de C. Sowerby's species from the Oxfordian.

Specimens referred to ' P.' vagans by Damon (1860,1880) and Borissiak and Ivanoff (1917) are definitely referable to R. fibrosus.

Goldfuss (1833) has applied J. de C. Sowerby's specific name to specimens said by Schlonsfr (1911) to be broken examples of Ctenostroon.

One of the syntypes ol 'Limat' Nerimat d'Orbigny (MNO 2879) is indeed a nember of the Limidae but the other two (MNO 2879A; Pl. 9. Figs. 15, 22; 2) are 'intermediate developers' of R. a'agans with 10 plicae at $\mathrm{H}: 36$ and 6 plicae at H: 23 respectively. The single measurable syntype of ' P.' Rhetus (MNO 2902; 3) is similarly an 'intermediate developer' and has 6 plicac at $\mathrm{H}: 21.5$. Boulf (1912) erroneously described and figured the two syntypes of 'L.' Verinat which belong in R. ruagans under ' P.' Rhetus. Consuanv (1906) thought that forms like ' P.' R hetus. (sensud'Orbigny) were specifically distinct but that d'Orbigny's description did not constitute an adequate indication. He therefore erected the more fully characterised 'Cblamys' semicostata as a replacement specific name.

The original figure of ' P.' anisopleteris: Buvicsifer (4) depicts a 'late developer' with 5 plicae at H: 28 .

The lectotype of 'P.' peregrmus Morris and Licett (IGS $9170 ; 5$) is a large 'early developer' (with 9 plicae at $\mathrm{H}: 10,11$ at $\mathrm{H}: 15$ and 13 at $\mathrm{H}: 20-35$) while the lectotype of 'P.' bemicostatus Marris and Lycfit (IGS 9168; Pl. 9. Fig. 18; 6) is a small 'intermediate developer'.

The sole observed type of ' P.' W'ollastonensis Lycett (BMI L76311: Pl. 9, Fig. 9;7) and the syntypes of 'P.' Rushdenensis LyCFtT (BMI L.76309, L76310; Pl. 9, Fig. 16; 8) are all clearly 'late-developing' forms of R. vazgans, ' P.' Wollastonensis exhibiting the typical continuous comarginal striae and ' P.' Rushdenensis the more unusual decussate pattern. The sole observed type of 'P.' Griesbachi Lycett (BM L76308; 9) is only distinguishable from the 'late developer' phenotype of R. vagans by a lack of striae and this can almost certainly be accounted for by abrasion.

Text fig. 174: Radulopecten vagans - anterior hinge length/length.

Text fig. 175: Radulopecten razans - posterior hinge length/length.

The holotype (N) of 'P.' intermittens W'mioborve (SM $\mathrm{J} 4759 ; 10$) is a small 'tate developer' with 19 radial striae.

The left valve figured under ' P.' "anomalus Terueem and Journy has 14 plicae and is indistinguishable from R. vagans. However, the right valves have about 30 radial striae and are thus quite unlike typical right valves of R. vagans. Similar forms (e. g. Pl. 9, Fig. 25) occur widely in the M. Jurassic and since there appear to be no intermediate right valve morphologies it may be that they should be accorded a specific distinction from R. vagans under Terpuevi and Jourdy's name. However, the present author is aware of no locality at which 'striate' morphs occur in the absence of 'non-striate' morphs. It therefore seems more likely that they are polymorphs of the same species rather than representatives of different species. Nauberge (1971) has gone so far as to suggest that they may be sexual dimorphs but the stratigraphic change in relative abundance of the morphs (see Sections 7 , 10) seems to argue against this particular hypothesis.

Inclusion of the 'striate' morph within R. vagans means that R. Romani Lissajous and ' Cb ,' rosimon Cossuavv (non D'Orbigny), both of which were based on such specimens, must be synonymised with R. vagans.

The origimal figure of ' P. 'Thumamni Covtejfav (11) appears to depict an early developing form of R. vagans with 9 or 10 plicae at $\mathrm{H}: 10$. However, the stratigraphic horizon (Kimmeridgian) is anomalously late for the latter species (see Section 5) and suggests that the figure may be a poor representation of an example of R. varians. Dechasfaux (1936) considers Contejean's species to be closer to R. fibrosus.

De Gregorio's figure of ' P.' samilus shows no more than a poorly preserved internal mould white that of ' P.' eglus is
only 5 mm high. However, both species exhibit 9 plicae and have a general form which suggests that they may be synonymous with R. vagans.
The figured specimen of 'P.' fibrosus J. Sowerby; Quens. tedt has 9 plicae, unlike J. Sowerby's species. Since it is described as an example of a variable species from the Bathonian there can be little doubt of its identity with R. vagans. E. Phillipl's (1900) 'Aequipecten' fibrosus is similarly referable to J. De C. Sowerby's species.
Arhell (1931a) examined the original (SM) to Lycett's illustration (1863, pl. 33, fig. 1a) of 'P.' inaequicostatus Phil. LIPS and pronounced it to be a representative of ' Ch .' (R.) anisopleurus (BuVIGNIER), a species considered above to be a junior synonym of R. vagans.

5. STRATIGRAPHIC RANGE

Excluding Goldfuss' (1833) invalid record of the species from the German Lias (see Section 4) the earliest certain record of R. vagans is provided by a single specimen (BM L17615) from the Murchisonae zone (Aalenian) of the Cotswolds. Two specimens of questionable affinities (see Section 4) from strata in the Bifrons-Murchisonae zones of Sicily (De Gregorio, 1886a, c) may be derived from a lower horizon. Only one other specimen (NM) is known from the Aalenian.

In the L. Bajocian specimens are known from the L. Trigonia Grit of the Cotswolds (BM L95380) and the Scarborough Limestone of Yorkshire (YM 500).

1n the U. Bajocian, R. vagans becomes quite common but it seems likely that the increase in numbers did not occur until the latest parts of the substage since all records which can be assigned to a zone (Lissajous, 1910; Paris and Richardson, 1916; Channon, 1950; sundry specimens in the BM, OUM, and GPIT) are derived from the Parkinsoni zone.

The species is found at almost all horizons in the Bathonian, locally becoming extremely abundant.

In the Callovian R. vagans is reported to be common in the U. Cornbrash (Macrocephalus zone) of England by Cox and

Arkell (1948). However, this is not borne out by the author's field work in Yorkshire and only 10 museum specimens (BM L91533, L91559, L91580; OUM J4821, J4822, J37587; SbM; $\mathrm{DM}[3]$) are known from this and equivalent horizons in Europe. The only other Callovian museum specimens assignable to a zone are 3 (BM 47436, L17969[2]) from the Kellaways Rock (Calloviense zone) of Yorkshire. Roluer (1911) records R. vagans from the L.-M. Callovian of the Jura and Borissiak and Ivanoff (1917) record the species from the M. Callovian of Russia. Other bibliographic records from the Callovian (Buvignifr, 1852; Dechaseaux, 1936), apart from those referring to the Macrocephalus zone (e. g. BEAN, 1839; Lissajous, 1910; Douglas and Arkell, 1932), cannot be assigned to a substage. R. vagans is not known to be common anywhere in the Callovian.

Two specimens from the Oxfordian (probably Plicatilis zone) of Berkshire (BM 9930) and Yorkshire (BM L363t; Pl. 9, Fig. 34) appear to be representatives of R. vagans but the possibility cannot be entirely excluded that they are extreme variants of R. inequicostatus. Oxfordian specimens mentioned in J. de C. Sowerby (1826), Roemer (1839) and Dffhaseaux (1936) and Kimmeridgian specimens mentioned in Coviejean (1859) may also be representatives of R. vagans (see Section 4).

6. GEOGRAPHIC RANGE

R. vagans is generally rare in the peri-Mediterranean region (text fig. 176) and is unknown outside Europe. In the Bathonian the paucity of locally derived specimens in museums at Dijon, Tübingen and Munich compared with the abundance of specimens known from N. France and S. England suggests a latitudinal temperature control on distribution. However, bibliographic records of the species further south, although sparse, occasionally refer to numerous specimens (e. g. Lissajous, 1923; Lavquine, 1929). It therefore seems more likely that the distribution of the species is a function of facies rather than temperature and that the increase in abundance from E. France/S. Germany to N. France/S. England is a reflection of a higher frequency of the appropriate facies (see Section 8).

Text fig. 176: Radulopecten vagans - European distribution.

7. DESCRIPTION OF ECOLOGY

The first time that R. vagans occurs in any numbers is in the Parkinsoni zone when it is found in S. W. Germany and the Cotswolds. In the latter area the sediments (Clypeus Grit) are bioturbated, oolitic limestones in which the 'striate' morph seems to be dominant (see Section 10), reaching a maximum height of 27 mm (OUM J36384). The largest Bajocian specimen (H: 35; BM L95380) is from the L. Trigonia Grit (L. Bajocian).
R. vagans becomes locally abundant in the Bathonian and the following account concentrates on such occurrences.
In the L. Bathonian (Progracilis zone) the species occurs in grain-supported shelly oolitic limestones at Minchinhampton and Taynton in the Corswolds. There is an abundant and diverse fauna of bivalves and gastropods but ammonites are rare. At the former locality fairly large 'early developers' are relatively common but no representatives of the 'striate' morph have been noted. Although most specimens are disarticulated the incidence of abrasion and breakage is low enough to suggest minimal transport.

In the M. Bathonian (Subcontractus zone) of Lorraine the species occurs in the Caillasse à Amabacia (= Chomatoscris). Estimates of the relative abundance of the 'striate' morph in this area range from 1% (MaUberge, 1971) to about 50% (De chaseaux, 1936). G. A. Gill (pers. comm., 1977) reports that R. vagans is a frequent associate of Chomatoseris (Zoantharia) in poorly sorted oolites and biosparites at other localities in France.
In the U. Bathonian small 'early developers' are the dominant forms of R. vagans present in the lower part of the Boueti Bed (Aspidoides zone) at Herbury (Dorset). 'Striate' morphs are unknown. The sediments are calcareous marls with an extremely abundant but low diversity fauna dominated by the bivalves Acromytilus and 'Liostrea', the brachiopods Digonella and Gomorhynchia and ectoprocts. Most specimens of R. viaguns are disarticulated but the low incidence of abrasion and breakage indicates minimal transport. Specimens in the upper part of the Boueti Bed and at an equivalent horizon at Amfreville (Normandy) are also heavily encrusted with the ectroproct Attractoccia. At the same level at Ranville large bivalved 'late developers' occur in a bed which earlier collectors called the 'Calcaire a Polypiers'. Similar forms occur in the slightly later Lion Caillasse (Discus zone, Hollandi subzone) at Luc, in association with rare representatives of the "striate' morph. The sediments, overlying a hardground, are very similar to the Boueti Bed but the fauna is considerably more diverse, with at least 65 species, including ectoprocts and sponges not seen in England (T. Palvir, 1974). Ammonites are, however, unknown. R. vagans also occurs in clays above a hardground at the same horizon in Wiltshire (Bradford Clay) and in the same region occurs in clays of the slightly later Discus subzone. Specimens from the latter horizon are usually fairly large, bivalved 'early developers' and the 'striate' morph is unknown. Serpulid encrustation is heavy but almost invariably restricted to the left valve. Specimens from the same level in Oxiordshire are mainly small 'early developers' but two 'striate' morphs (out of a total of 55 right valves collected by the author from Shipton Cement W'orks) are known. Almost all specimens are univalved but
abrasion and breakage are limited enough to suggest minimal transport. The sediments are non-oolitic, shell-fragment limestones containing an abundant and diverse in- and epibenthos (see p. 128) but few ammonites.
Apart from the Mâconnais (Lissajous, 1923) and Provence (Lavouive, 1929) where the stage is developed in shallow water marls and limestones, R. vagans is not known to be common elsewhere in the Bathonian, although records are widespread (text fig. 176). Prior to the Discus subzone the species is absent north of a line running west/east just south of Banbury and Brackley in England (Bradshaw, 1978). The maximum height attained in the Bathonian is 44 mm (MNO 2901; Discus zone; 'late developer').

Specimens from the calcarenites of the U. Cornbrash (Macroceplalus zone; L. Callovian) of England (see Section 5) are mainly large 'late developers'. The maximum height is 51 mm (OUM J 4821, BM L91533). Borissian and tvanoff's (1917) figures of specimens from the M. Callovian of central Russia have a maximum height of 80 mm and there is no suggestion of photographic enlargement.

8. INTERPRETATION OF ECOLOGY

The absence of R. viagans from pelagic limestones in the peri-Mediterranean region suggests an intolerance of soupy substrates. However, co-occurrence with Chomatoseris, an auto-mobile solitary coral which is highly characteristic of loose, soft sands (Gill and Coates, 1977), indicates a tolerance of coarse grained unstable substrates. Tolerance of laterally shifting sediments is indicated by the occurrence of the species in oolites (e. g. Minchinhampton) while a more general tolerance of instability in the physical environment is indicated by the widespread occurrence of R. vagans in deposits where ammonites are lacking and more localised occurrence in deposits (e. g. Boueti Bed) where even the bivalve fauna is reduced in diversity. However, eurytopy was insufficiently developed to allow colonisation of the highly unstable marginal marine environments which were present in central England during much of the Bathonian (Bradshaw, 1978).

By far the most common occurrence of R. vagans is immediately above hardgrounds or in minimally transported or in situ shell beds with an abundance of other shelly epibenthos (e. g. Luc, Amfreville, Herbury, Bradford-on-Avon). This suggests that the existence of hard substrates was the major factor controlling distribution (see Section 9) and implies that the abundance of the species at Minchinhampton is more a reflection of the abundance of shelly epibenthos than of a particular liking for shifting substrates. The abundance of the species at Shipton may likewise be a consequence of the unusual richness of the associated epibenthos.

Since serpulid worm encrustation of bivalved specimens is limited to the left valve it seems likely that the right valve was tightly adpressed against the substrate during life (see Section 9). Ectoproct encrustation probably occurred after death since bivalved specimens are rarely encrusted.

There is a strong suggestion of a competitive reaction between R. vagans and Chlamys (Ch.) textoria. The latter, a species exhibiting considerable substrate eurytopy in the Bajocian, is largely confined to organic build-ups during the

Bathonian (the acme of R. vagans) and the author knows of no locality at which both species have been Iound in numbers.

The author has presented elsewhere (JOHNSON, 1981) an analysis which suggests that in much the same way as in the Recent species Chlamys dieffenbachi (see Beu, 1966), plical variation in R. vagans reflects ecophenotypic reaction to environmental differences which were developed over the space of a few metres. In the case of Ch. dieffenbachi environmental heterogeneity is due to the patchy distribution of sponge substrates. Since the associated sediments have not been closely examined for the presence of spicules, it cannot be ruled out that R. vagans also developed different patterns of plication according to whether or not sponges constituted the substrate for attachment. That orher soft-bodied organisms were involved is, of course, also a possibility.

y. IL \CTIONAL MORPHOLOGY

The usually moderately deep byssal notch combined with small or moderate adult size (with the probable exception of a few specimens from the M. Callovian of Russia [see Section 7]) suggests that R. vagans was byssally attached throughout life. The generally lower convexity of the right valve and its subdued ornamentation are paradigmatic for tight fixation and variations in convexity perhaps suggest that R. vagans was adpressed against hard surfaces of variable shape (cf. below).

Although intercalation of new plicae would have probably led to increased shell strength and stiffness it is very doubtful whether the addition of numerous plicae in some specimens of R. vagans was a response to a need for a mechanically superior shell. In Ch. dieffenbachi a need for an increase in the density of plical spinelets in order to grip a sponge substrate seems to be the underlying reason for the adoption of a densely plicate form (BEU, 1966). A similar type of explanation involving some soft-bodied organism, even if not sponges, is suggested in R. vagans by the fact that the comarginal lamellae become progressively more localised onto the crests of the plicae, thereby retaining the possibility of close contact with the substrate, in the ontogenetic passage from a weakly to a strongly plicate form. If this explanation is correct then the distribution of the soft-bodied host must have been determined by the existence of hard substrates so as to produce the observed correlation between such substrates and the occurrence of R. vagans.
The presence of upstanding ornament and absence of anything more than minimal ontogenetic increase in umbonal angle must have greatly restricted swimming ability in R. vagans.

10. ORIGINS AND EVOLUTION

The origins of R. vagans are a mystery. The author is aware of no Jurassic pectinid species which can be regarded as a likely forebear. The ancestry of R. vagans may be connected with the largely Asiatic Triassic genus Indopectern.
R. vagans exhibits phyletic evolution in right valve morph frequency. Samples from the Bajocian only include a small proportion of the 'non-striate' morph but by the L. Bathonian (Progracilis zone) this morph was dominant, perhaps as
the result of some selective superiority. There also seems to be an evolutionary change in maximum height from the Bathonian to the Callovian. Forms possessing a similar 'late developer' phenotype (which thus rules out any chance of a purely ecophenotypic difference) reach a maximum height of 44 mm in the former stage and 51 mm in the latter stage.
The Callovian decline of R. vagans was probably the result of the widespread development of argillaceous facies producing soft sediments unfavourable for colonisation by the host organism (see Section 9).

Radulopecten varians (Roemer 1836)

Pl. 10, Figs. 1-3; text figs. 177-180

Synonymy

1836 Pecten varians sp. nov; ROEMER, p. 68, pl. 3, fig. 19.
? 1852 Pecten Beaumontinus sp. nov; Buvignier, p. 24. pl. 19, figs. 26-30.
? 1859 Pecten Thurmanni sp. nov; CONTEJEAN, p. 315. pl. 23, figs. 10-12.
? 1859 Hinnites clypeatus sp. nov; CONTEJEAN, p. 317, pl. 24, fig. 14.
1860 Pecter varians Roemer; Coquand, p. 79.
? 1862 Pecter Banneanus sp. nov; Etallon in ThurMann and Étallon, p. 259, pl. 36, fig. 12.
? 1862 Pecten Pagnardi sp. nov; Étallon in Thurmann and Étallon, p. 259, pl. 36, fig. 12.
1862 Pecten qualucosta Étallon in Thurmann and Etallon, p. 260, pl. 36, fig. 13.
non 1862 Pectenbeaumontinus Buvignier; Thurmann and Étallon, p. 260, pl. 36, fig. 14.
1863 Pecten perstrictus sp. nov; ETALLON, p. 56, pl. 8, fig. 8.
1864 Pecten varians Roemer; V. Seebach, p. 98.
1871 Pecten Urius sp. nov; Sauvage and Rigaux, p. 354.

1872 Pecten Urius Sauvage and Rigaux; Sauvage and Rigaux, p. 176, pl. 9, fig. 5.
1875 Pecten qualicosta Etallon; De Loriol and PelLat, p. 202, pl. 22, figs. 18-20.
1893 Pecten beaumontenus BUVIGNIER; DE LORIOL, p. 305, pl. 32, fig. 18.

1893 Pecten qualicosta ÉTALlon; DE LORIOL, p. 306, pl. 32, fig. 20.
1900 Pecten varians Roemer; E. Philippl, p. 99, text fig. 16a.
v 1905 Pecten qualicosta Étallon; Peron, p. 221.
v 1905 Pecten beaumontinus Buvignier; Peron, p. 230.
1917 Pecten of. qualicosta Etallon; BORISSIAK and 1VANOFF, p. 49, pl. 3, fig. 2.
1917 Pecten donezianus sp. nov; BOrissiak and 1VANOFF, p. 52, pl. 3, figs. 5-12.
? 1921 Chlamys Beaumontma (Buvignier); Cossmann, p. 6, pl. 1, fig. 1.

1926 Chlamys (Aequipecten) qualicosta (ETALLON); Arkell, p. 548, pl. 32, figs. 4. 5.
pv 1931a Chlamys (Chlamys) qualicosta (Etallon); ArKell, p. 111, pl. 11, figs. 2-5.
1936 Aequipecten qualicosta (ÉTALLON); DECHASEAUX, p. 51, pl. 7, figs. 7-21.
v 1936 Aequipecten Beaumontinus (BUVIGNIER); DECHASEaUX, p. 53, pl. 8, fig. 4.
1936 Aequipecten perstrictus (ÉTALLON); DECHASEAUX, p. 56, pl. 8, fig. 8.
v* 1936 Aequipecten Buvigneri sp. nov; DECHASEAUX, p. 58, pl. 8, fig. 2.
? 1952 Chlamys (Radulopecten) qualicosta (Étallon); Chavan, p. 37, pl. 2, fig. 15.

The type material of Pecten varians Roemer 1836, p. 68, pl. 3, fig. 19 is probably in the Roemer-Pelizafus-Museum, Hildesheim, W. Germany. The material was derived from the Oxfordian of N. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

' P. testa ovato-orbiculari convexo plana radiatim striata, valva sinistra convexiore, striis subinaequalibus lineis concentricis in striarum longitudinalium dorso lamelloso squamosis decussatis, auriculis inaequalibus longitudinaliter striatis.

Das Gehäuse ist eirund, oder fast kreisrund; die Schalen sind beide gewölbt, die linke am meisten; beide sind mit zahlreichen ungleichen Längsstreifen besetzt, auf denen die concentrischen Linien blättrige Schuppen bilden; diese sind gewöhnlich nur am unteren Teile der Schalen deutlich, fehlen aber selten ganz. Die Ohren sind ungleich längsgestreift und wenig quer-liniert.

Ist gewöhnlich etwas kleiner als das abgebildete Exemplar und findet sich im oberen Coral Rag bei Hoheneggelsen so wie am Galzenberge bei Hildesheim.'

2. AMENDED DIAGNOSIS

Differing from R. vagans, R. strictus and R. inequicostatus by the larger number of initial plicae and from all other species of Radulopecten by the existence of a non-plicate phase early in ontogeny.

Text fig. 177: Radulopecten varians - heightlength.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, early in ontogeny growing allometrically (text fig. 177) to become sub-orbicular near the maximum height of 33 mm (NM). Umbonal angle variable (text fig. 179), increasing slightly during ontogeny to produce concave dorsal margins. Disc flanks low.

Text fig. 178: Radulopecten zarluns - anterior hinge length/length.

Equilateral; inequivalve, left valve more convex than right, both low convexity. Intersinal distance greater in left valve than right; moderate sized byssal notch.

Auricles well separated from disc, moderate in size, anterior slightly larger than posterior. Anterior auricles meeting hinge line and disc at a right angle; posterior auricles meeting hinge line at a right or obtuse angle and disc at an acute angle. Anterior auricles ornamented with $2-4$ radial costae. Anterior hinge length moderate (text fig. 178).

Right valve ornamented near the umbo with closely spaced comarginal striac and usually a large number of very fine radial striae. Latter developing into plicae at shell heights above about 10 mm to match those on the left valve (Pl .10 , Fig. 1). Comarginal ornament tending to become reduced in the sulci.

Left valve also ornamented with comarginal striae near the umbo. All specimens possessing about 40 radial striae of which initially about 15 develop into narrow plicae to be followed, at a variable rate, by the remainder such that at $\mathrm{H}: 20$ there are between 16 (OUM J1891) and 39 (OUM J9005) plicae and at $\mathrm{H}: 30$ between $20(\mathrm{BM} 33+23)$ and 40 (MNO 4293) plicae (Pl. 10, Figs. 2,3). Comarginal striae expanding into lamellae on the crests of the plicae and tending to disappear in the sulci.

Shell thickness moderate.

4. DISCUSSION

Roemer's (1836) figure of 'Pecten' varians depicts a right valve whose number of plicae (ca. 28 at $\mathrm{H}: 22$) and metric proportions (1) fall within the range of the species described in Section 3. Since Rofyer's name is the earliest available the latter is known hereinalter as Radulopecten varians.

There is some doubt over the affinities of ' P.' Bearmontinus Buvignifr. This species and subsequent references thereto is discussed under R. strictus (Munster). Since Étallov's (1862) 'P.' Banneanus was allied to Buvignier's species

Text fig. 179: Radulopecten varians - height/umbonal angle.
and his 'P.' Pagnardi to Munster's species some doubt must remain as to the affinities of these species in spite of the fact that the figures of both appear to depict examples of R. varians. The figure of ' P.' qualicosta Étallon undoubtedly depicts a specimen of R. varians as does DE Loriol's (1893) figure of a specimen (repository: École Cantonale de Porrentruy, Switzerland) chosen as lectotype. Chavan's (1952) record of 'Chlamy's' (R.) qualicosta appears to be a misnomer for R. fibrosus (q. v.).

Étallon's (1863) original reference to 'P.' perstrictus has proved impossible to trace. However, the description has been reiterated by Dechaseaux (1936) together with a photo-
graph of a type, which is indistinguishable from R. varaans. The original reference to 'P.' Urius Sauvage and Rigaux has similarly proved impossible to trace but the species was redescribed and figured by the same authors (1872) and the number of plicae (30 at $\mathrm{H}: 21.5$) and metric proportions (2) are within the range of R. varians.

The holotype (M) of 'Aequipecten' Buvignieri Dechaseaux (NM) has 22 plicae at $\mathrm{H}: 33$ and metric proportions (3) which are indistinguishable from those of R. varians. The syntype series of ' P.' donezianus Borissiak and Ivanoff has not been studied but the photographs leave no doubt that the species should be synonymised with R. varians.

Text fig. 180: Radulopecten varians - European distribution.

The tigure of 'Hmmtes' clypeatrs Covteffav is of a right valve unlike that of any 'Hinnites' ($=$ Eopecten) species but with a plical count (27 at $\mathrm{H}: 20$) and metric proportions (4) which suggest that it may be a representative of R. varians.

The affinities of ' P.' Thumnamni Contejean are discussed under R. vatgans.

5. STRATfGRAPHIC RANGF

The earliest zonally defined records of R. varians are from the Transversarium zone (U . Oxfordian) of Dorset where the species is common. In the same area it is common in the Cautisnigrac zone (U. Oxfordian). Roeyfr's (1836) specimens are probably from the Decipiens zone. ft is doubtful whether 'Oxfordian' records from Switzerland (Thurmann and Étallon, 1862; lif Loriol, 1893) and France (e. g. D ChASEAUX, 1936) include any material from later horizons in the stage.

A few specimens of R. varians are known from the L. Kimmeridgian of east and central France (MNO 4293, MNP S04680, S04683, S05068) and one from the west coast (author's collection). The number of specimens involved in de Loriol and Pellat's (1875) record from the L. Kimmeridgian of the Boulonnais is indeterminate but probably small. It is very doubtful whether Dechaseaux's (1936) 'Kimméridgien' record includes any specimens from horizons above the lowest substage.

6. GEOGRAPHIC RANGE

Apart from isolated occurrences in the 'Jurassic' of Poland and Russia (Borissiak and Ivanoff, 1917), R. varians is entirely restricted to N. W. Europe (text fig. 180).

7. DESCRIPTłON OF ECOLOGY

R. variuns is first known to be common in the 'Qualicosta' Bed near the base of the Osmington Oolite Series (Transversarium zone) where it reaches a maximum height of 31 mm (author's collection). The sediments are cross-bedded bur poorly sorted oobiosparites. The remaining fauna is domimated by Nanogyra (association G of Fursic., 1977) and all the bivalves are disarticulated. R. varians is not common in the remainder ol the series in Dorset, is rare throughout the series in N. Wiltshire, Berkshire, Oxfordshire and Cambridgeshire, where coral rag facies occur (Arkell, 1931a), and is unknown in Lincolnshire and Norfolk where phyllosilicate clay facies are dominant (Broukfifld, 1973). The equivalent horizon in Yorkshire is largely developed in coral rag facies and is probably the source of the three specimens (BM 34423 , L3633, LS4564) which constitute the only known records of R. varlans from the area (cf. Arkell, 1931a).

In the 'Trigonia' clavellata Beds of the Gloucester Oolite Series (Cautisnigrae zone) in Dorset, R. varuans occurs commonly in the Main Shell Bed, where it reaches a maximum height of 28 mm (author's collection), and in the Red Beds. The sediments are more marly than the 'Qualicosta' Bed and have a siderite cement. The fauna is also more diverse (association D of Fursich, 1977) and the bivalves, of which Nanogyrat and Myophorella are the dominant genera, are occasionally articulated.
R. Varians is apparently absent after the Cautisnigrae zone in Britain.

The species is not known to be common at any horizon in the Oxfordian of continental Europe, although it reaches a height of 33 mm (NM). It is known to be rare in coral reef facies in the Jura (Thurmann and Étallon, 1862; de Loriol, 1893).

Rare specimens from the L. Kimmeridgian reach a maximum height of 27 mm (MNO 4293) and are found in association with R. strictus.

8. 1NTFRPRETATION OF ECOLOGY

WIISON (1968) has interpreted the shell beds in which R. varians occurs commonly in Dorset as the highest parts of tidal flat regressive sequences, implying thereby that they represent strand-line accumulations of sub-littoral but nearshore organisms. However, Talbot (1973) considered that they represented offshore environments, albeit within regressive sequences, a conclusion which is supported, at least for the 'T.' clavellata Beds, by Fursich's $(1976,1977)$ taphonomic analysis which indicates a stratigraphically condensed but minimally transported fauna living in a moderate energy submarine environment. Taphonomic evidence from the 'Qualicosta' Bed (see Section 7) is less indicative of an in situ fauna so Wilson's interpretation may be applicable to this horizon. The implication is therefore that distance from the shoreline played no part in determining the suitability of an area for colonisation by R. varions. The absence of the species from some clay (e. g. Transversariumzone in E. Anglia) and micrite (e.g. throughout the species range in many areas of S. Europe) sequences and its rarity in others indicates that low energy environments were not suitable for colonisation. The rarity of the species in reef and reef-derived sediments suggests that anything other than level bottom environments were similarly unfavourable.

The Kimmeridgian occurrences of R. varians imply a lack of competition with the probable descendant, R. strictus. There appears to be no basis for this in terms of microhabitat differences (see Section 9 and p. 202).

9. FUNCTIONAL MORPHOLOGY

Since in many morphological respects R. varians is identical to R. vagans a similar tightly byssate mode of life can be inferred. The comarginal lamellae on the left valve are, however, considerably smaller in R. varians so it is doubtful whether they could have served any purpose in gripping a soft substrate, as suggested for R. viagans. Hard substrates, such as shells, were probably used for attachment.

10. ORIGINS AND EVOLUTION

The most likely ancestor for R. viarians is R. vagans. Since the first occurrence of the former species is within the geographic range of the latter it may be that speciation was sympatric. The pattern of omament on the left valve of R. varians is essentially a scaled-down version of that of some 'latedeveloping' forms of R. vagans. This suggests that transspecific evolution involved heterochronic retardation of the
development of size with respect to that of 'shape'. However, since ornamental development in R. vagans was almost certainly under 'environmental' control trans-specific evolution must also have involved 'genetic assimilation' (Wadnivgiu
, 1957). Heterochrony and 'genetic assimilation' are both probably indicative of regulatory gene volution.
There are no significant phyletic changes in R. varians. The disappearance of the species from England after the Cautisnigrae zone is probably the result of the widespread development of unfavourable argillaceous facies in the Decipiens zone. A similar development of argillaceous facies throughout Europe in the Kimmeridgian was almost certainly the cause of the extinction of the species early in the stage.

Radulopecten strictus (Munster, 1833)

Pl. 10, Figs. 4-6; text figs. 181-183

Synonymy

v* 1833 Pecten strictus sp. nov; MUNSTER in GOLDFUSS, p. 49, pl. 91, figs. 4a-c.

1836 Pecten strictus MUnster; Roemer, p. 69
v"p 1850 Pecten Minerva sp. nov; D'Orbigny, v. 2, p. 54 (Boule, 1932, v. 21, p. 11, pl. 2, fig. 1).
1850 Pecten Marcus sp. nov; D'Orbigni, v. 2, p. 54 (Boulf, 1932, v. 21, p. 11, pl. 2, fig. 2).
? 1852 Pecten Beaumontmus sp. nov; BuVIGNiER, p. 24, pl. 19, figs. 26-30.
1852 Pecten Dyoniseus sp. nov; Buvignier, p. 24, pl. 19, figs. 26-30.
? 1859 Pecten Grenieri sp. nov; CONTEJFAN, p. 311, pl. 23, figs. 7-9.
1860 Pecten strictus MUNsTER; COQUAND, p. 79.
1860 Pecten Marcus D'Orbigny; Coquand, p. 91.
? 1862 Pecten Banneanus sp. nov; Étallon in ThurMANN and Étallon, p. 259, pl. 36, fig. 12.
? 1862 Pecten Pagnardi sp. nov; Ëtallon in Thurmann and Étallon, p. 259, pl. 36, fig. 12.
1862 Pectenastartinus sp. nov; ÉTALLON in Thurmann and Étailon, p. 260, pl. 36, fig. 14.
1862 Pecten beaumontinus Buvignier; Thurmann and Étallon, p. 260, pl. 36, fig. 14.
non 1862 Pecten Grenieri CONTFjean; Thurmann and Étallon, p. 265, pl. 37, fig. 7.
1863 Pecten Minerva D'Orbigny; Dolleus, p. 80 , pl. 14, figs. 4-6.
1864 Pecten cf. strictus MONSTER; v. Seebach, p. 98.
? 1867 Pecten solidulus Stoppani; J. Meneghini, p. 162, pl. 28, fig. 12.
1872 Pecten kimmeridgiensis Cotteau; de Loriol et al., p. 381, pl. 22, fig. 4.
1872 Pecten Grenieri CONTEJEAN; DE Loriol et al., p. 382, pl. 22, figs. 5, 6.
v^{*} ? 1872 Pecten tombecki sp. nov; DE LORIOL in DE LORIOL et al., p. 383, pl. 22, figs. 7-11.
? 1874 Pecten gioenii sp. nov; Gemmellaro and Di BLaSI, p. 119, pl. 3, figs. 5-7.
? 1875 Pecten Gioenii Gemmellaro and Di Blasi; Gemmellaro, p. 50.
1875 Pecten strictus Munster; de Loriol and Peliat, p. 190, pl. 22, figs. 10, 15.
? 1878 Pecten (Chlamys) Veneris sp. nov; Gemmellaro and Di Blasi in Gemmellaro, p. 396, pl. 30, figs. 11, 12.
1881 Pecten strictus MUNSTER;DE LORIOL, p. 90, pl. 12, fig. 11.
v non 1883 Pecten aff. Gremeri CONTEJEAN; BOEHM, p. 603, pl. 67, figs. 17, 18.
v non 1883 Pecten aff. Gioenu Gemmellaro and Di Biasi; BOEHM, p. 604, pl. 67, figs. 19, 20.
1893 Pecten (Camptonectes) cf. Grenieri CONTEJEAN; Fiebelkorn, p. 399, pl. 14, fig. 11.
non 1893 Pecten beaumontinus Buvignier; DE LORIOL, p. 305, pl. 32, fig. 18.
v 1893 Pecten Minerva D'Orbigny; de Loriol and Lambert, p. 141, pl. 10, figs. 4-6.
$\mathrm{v}^{*} 1893$ Pecten sainputeanus sp. nov; DE LORIOL in DE Loriol and Lambert, p. 143, pl. 10, fig. 9.
? 1904 Pecten (Chlamys) Girardoti sp. nov; de Loriol, p. 220, pl. 23, fig. 7.
? 1905 Pecten (Camptonectes) insutus sp. nov; Cragin, p. 44, pl. 4, figs. 11, 12.
v?p 1905 Pecten Minerva D'Orbigny; Pfron, p. 220.
v? 1905 Pesten beaumontinus Buvignier; Peron, p. 230.
1905 Pectenkimmeridgiensis COTTEAU; PERON, p. 231.
? 1905 Pecten (Aequipecten) of. strictus MONSTER; Kilian and Guebhard, p. 758.
? 1906 Pecten fibratus sp. nov; FuCIN1, p. 618, pl. 11, fig. 2.
non 1907b Chlamys cf. stricta (MUNSTER); COSSMANN, p. 2, pl. 2, figs. 5, 6.
1917 Pecten strictus Munster; Borissiak and Ivanoff, p. 48, pl. 3, figs. 1, 3.
? 1921 Chlamys Beatmontina (Buvignier); Cossmann, p. 6, pl.1, fig. 1.
? 1931 Pecten (Aequipecten) arachnoideus sp. nov; SokOLov and Bodylevsky, p. 61, pl. 4, figs. 10, 11.
v 1936 Aequipecten Grenieri (Contejean); DechasFAUX, p. 52, pl. 8, fig. 7.
v non 1936 Aequipecten Beatmontinus (Buvignier); DechasEAUX, p. 53, pl. 8, fig. 4.
v 1936 Aequipecten Minerva (D'Orbigny); Dechas EAUX, p. 53, pl. 7, fig. 22, pl. 8, fig. 1.
1936 Aequipecten strictus (MUNSTER); DECHASEAUX, p. 54.

1936 Aequipecten Dionyseus (Buvignier); DechasEAUX, p. 54.
v 1936 Aequipecten astartinus (Étallon); Dechaseaux, p. 55 , pl. 8, fig. 5.
(?) 1936 Aequipecten kimmeridgiensis (COTTEAU); DE CHASEAUX, p. 55.
1952 Chlamys minerva (D'Orbigny); Chavan, p. 35 , pl. 2, figs. 12, 13.
(?) 1965 Pecten insutus Cragin; Alencasta de Cserna and Estela Buitron, p. 10.

Lectotype of Pecten strictus Munster in Goldfuss 1835, p. 49, pl. 91, figs. 4a-c designated herein; BSPHG AS VII 636 (figs. 4a and 4b of Goldfuss' pl. 91 are probably restored illustrations of this specimen); Pl. 10, Fig. 6 herein; 'Zone of Pteroceras aceani' (L. Kimmeridgian), Oelingerberg bei Kappeln, N. Germany. Paralectotypes; BSPHG (3 specimens); also 'Zone of Pteroceras oceani', Oelingerberg bei Kappeln.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa ovato-orbiculari convexo-plana aequivalvi, lineis radiantibus confertis subaequalibus rectis, striis concentricis subtilissimis vix conspicuis, auriculis inaequalibus lineatis.

E montibus Westphalicis. M. M.
Eylörmig, Chach-convex, gleichklappig, mit gedrängten, sehr zahlreichen, leinen und geraden ausstrahlenden Linien,
von welchem emage her und da etwas dicker ersehemen als die übresen. Sie sind auch aut den ungleichen ()hren bemerklich, und hier won deutichen concentrischen Limien durch-
 rang sichtlich werden.

Komment dem vorigen an demselben Funderte vor:

2. ANH:NIDHOHAGNOSIS

Distinguished trom R. 2 oggoms and R. Eam, ms by the lasger number of radial striae and from the latere also by the smaller number of initial plicae. Destinguishad trom all other specion

Text tig. 1s1: Redrulopecten ermetres hewhe length.
of Rudulopecten be the existence of a non-plicate phase carly ith ontugens.

3. ANI:NDIII DESCRUVHON

Ifsentially very sumilar to k. varkens. Differing in the maintename of a sub-owate torm (text fig. 181) to the maximum height of 35 mm (3 Bl unnumbered), in the somewhat higher convexty and slighty smaller bysal noth, in the tendenev for the posterier uriclen to meer the hinge line at 90°. and in the ornament.

Risht valve omamented with between 73 (INO) and 110 (3,125344) radial striac (Pl . 10, Figs. t, 5) ; left wate ornomented with between 60 (BM ummumbered) and 75 (MNO) and probably up to $\$ 5$ (sece Section 4) radial striae (Pl. 10 , lig. 6) of which between 5 and 8 and persibly up to 12 (see Secton t) developinto low plicac bearing lamellae at intervals of about 2 mm.

11 UA is ploted in text lis. 182.

4. DISCUSSION

The lectotype (herein designated) of 'Peiten' strictas
 served yecemen but the existence of closels spaced radial striae leaver no doube that it in a representative of the epecios deseribed in Section Bher which Moverre's name is thus the
 tigured examples of Vowsite R's spectes trom the Bathonian must be teated with caution owing to the unusual stratigraphic horizon (see Sectuon 5). Cossinve's (1907b) recond of

 Buive (ONO$)^{-25}$) is ctearly reterable to Rudulopectenstric-

Text tig. 152: Radulopecters structur - height umbonal angle.
tus but the other ($\mathrm{MNO}+725 \mathrm{~B}$) bears more resemblance to the 'coarse' phenotype of Ch. (Ch.) textoria. Some of the specimens (MNP) referred to d'Orbiciny's species by Peron (1905) are undoubtedly examples of R. strictus but others are more reminiscent of R. varians.

The author has been unable to trace the holotype (M) of 'P.' Marchs d'Orbigvy but Boulf (1932) has provided a photograph of the specimen which, although poorly preserved, displays the fine radial striae characteristic of R. strictus.

The figure of ' P.' Beaumontinus Buvkjvif resembles R. strictus but the text specifies an abnormally small number of radial striac ($50-60$) which are said to be raised into plicae on both the left and right valves. Drchastaux (1936) has figured a specimen (NM) which may be a type of BuvigNilr's species and this, with more than 15 plicae, is clearly an example of R. varians. Specimens referred to Buviginirk's species by DE Loriol (1893) are similarly referable to R. varians and Perov's (1905) specimens (MNP) appear to have only about 35 striae and thus probably also belong in this species. Thur MANN and ÉTALLON (1862) figure a right valve with 90-100 striae (within the range of R. strictus) under BuvicNirR's specific name but also appear to use the same specimen as a basis for the erection of a new species, ' P.' astartinus. Coss. Wavv's (1921) 'Chlamys' Beaumontina was said to have 60-70 striac on the right valve and therefore seems to occupy an intermediate position between R. strictus and R. varians.

The figures of ' P.' Dyonisens Buvicinifr closely resemble R. strictus and a specimen in NM which may be a type has metric proportions (1) and number of striae on the right valve (100) within the range of the latter species.
The figure of ' P.' Grenieri Contejeav depicts a specimen with many radial striae, as in R. strictus, but which is however also ornamented with comarginal lamellae, giving a resemblance to Camptonectes (Camptochlamys) obscurus. H/L (2) is within the range of the former species but H/UA is somewhat high. Specimens referred to Contfjfan's species by de Loriol et al. (1872), Fifbelaorn (1893) and Df CHASEAUY (1936) are clearly examples of R. strictus but specimens referred to Contejean's species by Thurvann and Etallon (1862) and Bofhm (1883) have affinities with C. (Cc.) obscurus.

It has proved impossible to trace the original description of 'P.' kimmeridgiensis Cottrau but Prion (1905), who almost certainly examined the type material, has applied the name to specimens from the Kimmeridgian described as having numerous radial striae, which can thus be safely assumed to be examples of R. strictus. Dr Loriol et al. (1872) figure a right valve under COTTFAU's name which, with about 90 striae, is indistinguishable from R. strictus. Specimens referred to 'Aequipecten' kimmeridgiensis by Dechasi aux (1936) were allied with 'Ac.' Grenicri (Covtejean) and 'Ae.' astartinus (F́tallon) and are thus very probably conspecific with R. strictus (sce above).

Although the syntypes of 'P.' tombecki De Loriol (MNS) have 12 plicae on the left valve the fact that the number of striae $(60-70)$ and H/L (3) is within the range of R. strictus suggests that they should be considered to be extreme variants of the latter species.

The original figure of ' P '. giocnı GFMbilaro and Di Buas from Sicily depicts a specimen with about 70 striae on the left valve and metric proportions (ψ) within the range of R. strictus. Some doubt must, however, remain over whether P. giocnii is synonymous with the latter species owing to the anomalously late stratigraphic horizon (L. Tithonian) and the fact that Bofriv (1883), who may have examined the type material, has referred to Gfmmflearo and Dı Blasi's species a specimen (BSPHG) whose continuous comarginal ornament is unlike that of R. strictus.
The sole observed type of ' P.' sainputeanus de Loriol (MNS B. 03984: PI. 10, Fig. 4), a right valve, has about 76 radial striae and metric proportions (5) within the range of R. strictus.

The number of plicae on the left valve (7-8) and H/L (6) of the original figure of ' P.' ('Chlamys') Girardoti DE Lorion. does not allow of a separation from R. strictus. The abnormally large number of striae (80) and high H/UA probably represents extreme variation within the latter species. The same can be said of the 85 striae on the left valve and high H/UA (7) of the original figure of ' P.' ('Camptonectes') insutus Cragiv, a species from the U. Jurassic of Texas whose H / L is inseparable from R. strictus. Alfncasta de Cserna and Estrla Buttros's (1965) unillustrated record of 'P.' insutus from the U. Jurassic of Mexico must be treated with some caution owing to the slight possibility that Cragiv's species is not synonymous.
'P.'('Aequipecten') arachnoideus Surolov and Bodylevsky from Spitzbergen has 70 striae on the left valve and metric proportions (8) of the original figure within the range of R. strictus. However, the stratigraphic horizon (Ryazanian) is anomalously late (see Section 5) and together with the number of striae on the right valve (150) suggests that Sobolov and Bodylevshy's species is probably distinct.
'P.' soludulus Stoppavi; J. Mfnfghini (U. Lias), 'P.' ('Chlamys') Veneris Gfumfllaro and D_{i} Blasi (L. Lias) and ' P.' fibratus FUCIN (L. Lias) are all finely striate forms but their horizons of derivation suggest that they are probably worn specimens of Ch. (Ch.) textoria rather than early representatives of R. strictus. 'P.' fibratus also has an unusually low H/UA (9) although H/L in this species and both H/L and H/UA (10) of ' P.' (' Cb. .') Veneris are within the range of R. strictus. Stoppavi's original description of ' P.' solidulus has nor been traced.
'P.' Banncanus Étallon and 'P.' Pagnardi Étallon ate both discussed under R. varians.

5. STRATIGRAPHIC RANGE

The earliest certain occurrences of R. strictus are in the Ox fordian and of these none are undoubtedly earlier than the U. Oxfordian. Pre-Oxfordian occurrences of R. strictus may be constituted by four poorly preserved specimens (BM unnumbered; identified with a glyph in text figs. 181, 182) from the Kellaways Rock (Callovian) of Wiltshire and by specimens from the Bathonian (Kiliav and Guebhard, 1905) and Lias (J. Meneghini, 1867; Gemmellaro, 1878; Fucini, 1906) discussed in Section 4.

The species is locally common in the L. Kimmeridgian but certain U. Kimmeridgian records are restricted to specimens

Text fig. 183: Radulopecten strictus - European distribution.
mentioned in de Loriof et al. (1872) and de Loriol and Pellat (1875).

Specimens from the L. Tithonian of Sicily (Gemifllaro and Dı Blast, 1874; Geumfllaro, 1875) may perhaps be late representatives of R. strictus and there is a slim possibility that specimens from the Ryazanian of Spitzbergen (Sonut ov and Bodylevshy, 1931) may constitute yet later examples of the species (see Section t).

6. GEOGRAPHIC RANGE

The distribution of R. strictus is centred in N. W. Europe (text fig. 183). The only possible accurrences (see Section 4) outside this ared are in the L. Tithonian of Sicily (Gfmmf L laro and Di Blasi, 1874; Gfmmellaro, 1875) and the U. Jurassic of Texas (Cragin, 1905) and Mexico (Alf ncasta de Csfrva and Estela Buitron, 1965).

7. DFSCRIPTION OF ECOLOGY

R. strictus occurs commonly in condensed oolitic ironstones of the Pseudocordata zone (U. Oxfordian) near Weymouth, Dorset where it reaches a maximum height of 35 mm (BM unnumbered).

1n U. Oxfordian sands in Normandy R. strictus is a quite common element in a bivalve fauna dominated by Neomiodon and cyprinids but in which trigoniids, astartids, tancrediids and corbulids also uccur (Chavan, 1952).
R. strictus is common in the Calcaire a Astartes (Cymodoce zone), a limestone/marl sequence in the E. Paris Basin. It also appears to be quite common in the Kimmeridgian of Normandy and the Boulonnais but the exact horizon within the clay/phosphate nodule sequence is not clear.
R. strictus is not known to be common in any areas apart from those discussed above.

8. INTERPRETATION OF ECOLOGY

During its short acme R. strictus was able to colonise a wide variety of level bottom substrates. Tolerance of a range
of energy levels is suggested by its occurrence in both arenaceous and argillaceous sediments.
The predominance of brackish water forms (Hallam, 1976) in the U. Oxfordian sands in Normandy indicates that salinities were usually reduced. However, the occurrence of apparently fully marine forms (e. g. trigoniids) suggests that salinities were sometimes normal during deposition of this unit thus the presence of R. strictus does not necessarily imply an ability to tolerate reduced salinities.

Assuming that specimens derived from Sicily, Texas and Mexico (see Section t) are representatives of R. structus and that therefore the species was able to tolerate waters which were warmer than those of the main range in N. W. Europe the absence of R. strictus from apparently suitable limestone/marl facies in southern continental Europe (e. g. the Rhone Basin) is a mystery.
A fairly close Recent morphological analogue of R. strictus is Chlamys (Ch.) nivea (see Trible, 1976).

9. FUNCTIONAL MORPHOLOGY

Since, in the relevant aspects of morphology R. strictus is almost identical to R. varians, a similar mode of life, tightly byssate on such hard substrates as shells, can be inferred.

10. ORIGINS AND EVOLUTION

The ancestor of R. strictus was almost certainly R. vartuns. The increase in the number of radial striae and decrease in the number of initial plicae cannot have been caused by heterochrony so change in the structural rather than the regulatory genome is perhaps implied.
Within R. strictus eurytopy combined with small size and a possible phyletic reduction in maximum height from the U. Oxfordian $\left(\mathrm{H}_{\text {max }}: 35\right)$ to the L. Kimmeridgian $\left(\mathrm{H}_{\text {max }}: 28\right.$; BM L87356) points to the prevalence of ' r ' selection (Gourd, 1977).

No convincing deterministic explanation is available to account for the post L. Kimmeridgian decline of R. strictus.

Radulopecten fibrosus (J. Sowerby 1816)
Pl. 10, Figs. 7-18, 20-22, ?Fig. 24; text figs. 184-192

Synonymy

$\mathrm{v}^{*} 1816$
Pecten fibrosus sp. nov; J. Sowerbr, p. 84, pl. 136, figs. 1, 2.
1822 Pecten sulcatus sp. nov; Young and Bird, p. 33, pl. 9, fig. 3.
non 1829 Pecten fibrosus J. Sowerby; Phillips, pl. 6, fig. 3.
1831 Pecten fibrosus J. Sowerbi, Deshayes, p. 82, pl. 8, fig. 5.
1833 Pecten fibrosus J. Sowerby; Goldfuss, p. 46, pl. 90, fig. 6.
1836 Pecten fibrosus J. Sowerby; Roemer, p. 69.
(?) 1836 Pecten fibrosus J. Sowerby; Lamarck, p. 227.
(?) 1839 Pecten fibrosus J. Sowerby; Bean, p. 60.
v non 1850 Pecten fibroszs J. Sowerby; D'Orbigny, v. 1, p. 341.
v* 1850 Pecten subfibrosus sp. nov; D'Orbigny, p. 373.
non 1852 Pecten fibrosus α var. nov; Bronn, p. 211.
1852 Pecten fibrosus β var. nov; Bronn, p. 211.
non 1852 Pecten fibrosus J. Sowerby; Quenstedt, p. 507. pl. 40, fig. 47.
(?) 1858 Pecten fibroshs J. Sowerby; OPPEl, p. 568.
? 1859 Pecten Thurmanni sp. nov; CONTEJEAN, p. 315, pl. 23, figs. 10-12.
non 1860 Pecten fibrosus J. Sowerby; Damon, pl. 3, figs. 1, 1a.
1860 Pecter vagans J. De C. Sowerby; Damon, pl. 9, fig. 4 (non J. De C. Sowerby sp.).
(?) 1860 Pecten fibrosus J. Sowerby; CoQuand, p. 70.
(?) 1860 Pecten subfibrosus D'OrBIGNY; COQUAND, p. 73.
1862 Pecten subfibrosus D'Orbigny; Thurmann and Etallon, p. 254, pl. 36, fig. 1.
1862 Pecten Veziani sp. nov; Etallon in Thurmann and Etallon, p. 264, pl. 37, fig. 8.
1863 Pecten Midas d'Orbigny'; Dollfus, p. 79, pl. 14. figs. 1-3 (non d'Orbigny sp.).
1864 Pecten subfibrosus D'Orbigny; V. Seebach, p. 96.
(?) 1867 Pecten fibrosus J. Sowerby; Laube, p. 12.
? 1872 Pecten Midas D'Orbigny'; DE LORIOLetal., p. 385 (non D'Orbigny sp.).
1874 Pecten fibrosus J. Sowerby; Brauns, p. 337
? 1875 Pecten midas D'Orbigny; de Loriol and Pellat, p. 193 (non D'Orbigny sp.).
non 1880 Pecten fibrosus J. Sowerby; Damon, pl. 3, figs. 1, Ia.
1880 Pecten vagans J. De C. Sowerby; Damon, pl. 9, fig. 4 (non J. de C. Sowerby sp.).
v 1880 Chlamys Midas (D'Orbigny); Damon, pl. 17, fig. 4 (non D'Orbigny sp.).
1882 Pecten subfibrosus D'Orbigny; ROeder, p. 49, pl. 1, figs. 12a-d.
non 1882 Pecten fibrosus J. Sowerby; Roeder, p. 50, pl. I, figs. $11 \mathrm{a}, 11 \mathrm{~b}$.
1883 Pecten fibrosus J. Sowerby; Lahusen, p. 23, pl. 2, fig. 3.
1893 Chlamys subfibrosa (D'Orbigny); Siemiradzki, p. 119.

1894 Pecten subfibrosus D'Orbigny; de Loriol, p. 45.
(?) 1897 Pecten subfibrosus D'OrbigNY; DE LORIOL, p. 127.
(?) 1900 Pecten subfibrosus D'Orbigny; DE LORIOL, p. 126.
non 1900 Aequipecten fibrosus (J. Sowerby); E. Philiplr, p. 98 , fig. 15.
non 1901 Pecten (Chlamys) subfibrosus D'OrbiGNY; DE Loriol, p. 106.
(?) 1904 Pecten subfibrosus D'Orbigny; dE LORIOL, p. 227.

1904 Pecten subfibrosms D'Orbigny; Ilovaisky', p. 251, pl. 8, figs. 14, 15a, 15b.
(?) 1905 Pecten fibrosus J. Sowerby; Kilian and GuébHARD, p. 766.
1911 Pecten subfibrosus D'Orbigny; Boden, p. 192, pl. 8, fig. 1.
1915 Pecten subfibrosus D'Orbigny; Krenkfi, p. 299, pl. 26, fig. 23.
? 1915 Pecten (Aequipecten) Triboleti sp. nov; ROllier, p. 475, pl. 30, fig. 11.

Pecten fibrosus J. Sowerby; Douville, p. 74, pl. 10, figs. 1a, Ib.
v non 1916

1917 Pecten subfibroshs D'Orbigny; Borissiak and IVANOFF, p. 28, pl. 4, figs. 7, 8, 9a, 9b, 12-14.
1917 Pecten vagans J. De C. Sowerby; Borissiak and Ivanoff, p. 33, pl. 4, fig. 6 (non J. de C. Sowerby sp.).
1917 Pecten Sokolowi sp. nov; BORISSIAK and IVANOFF, p. 46, pl. 2, figs. 10, 10a.
(?) 1925 Pecten fibrosus J. SOWerby; Read et al., p. 80.
v 1926 Aequipecten fibrosus (J. Sowerby); Arkell, p. 546, pl. 34, figs. 2-5.
v 1931a Chlamys (Aequipecten) fibrosa (J. Sowerby); Arkell, p. 112, pl. 11, figs. 6-12.
v* 1931a Chlamys (Aequipecten) superfibrosa sp. nov; ARKELL, p. 114, pl. 11, figs. 13-16.
pv 1931a Chlamys (Aequipecten) midas (D'Orbigny); Arkell, p. 115, pl. 11, figs. 17-21 (non D'Orbigny sp.).
1934 Pecten (Aequipecten) fibrosus J. Sowerby; Stoll, p. 21, pl. 2, fig. 19.

1934 Pecten (Aequipecten) fibrosus var. duplicostatus var. nov; STOLL, p. 21, pl. 2, figs. 16-18.
1934 Pecten (Aequipecten) tenuicostatus sp. nov; STOLL, p. 22, pl. 2, fig. 20.
v 1936 Aequipecten fibrosus (J. Sowerby); Dechaseaux, p. 47, pl. 6, figs. 17, 17a; ?pl. 6, figs. 15, 16, 16a (non pl. 6, figs. 18, 18a, 19, 20, pl. 7, figs. 1-3).
? 1936 Aequipecten Thummanni (CONTEJEAN); DECMASEAUX, p. 57.
1936b Chlamys fibrosa (J. Sowerby); Arkell, p. S8.
1952 Chlamys (Aequipecten) fibros، (J. SOWERBY); Makowski, p. 17.
1952 Chlamys (Radulopecten) fibrosa (J. Sowerby); Chavan, p. 36, pl. 2, fig. 14.
? 1952 Chumys (Radulopecten) qualicosta (ÉTALLON); Chavan, p. 37, pl. 2, fig. 15 (non Étallon sp.).
v^{*} ? 1956 Chlamys (Radulopecten) drewtonensis sp. nov; Nfale, p. 371, pl. 28, figs. 1-5.
(?) 1971 Aequipecten fibrosus (J. Sowerby); Barbulescu, p. 227.
(?) 1971 Chlantys (Radulopecten) fibrosa (J. Sowerby); WORSSAM and IvIMEY-COOK, p. 40.
pv 1978 Chlamys (Radulopecten) fibrosa (J. SOwerby); DUFF, p. 72, pl. 6, figs. 2, 7-9; text fig. 24.
v? 1978 Chlanys (Radulopecten) drewtonensis Neale; Duff, p. 208, pl. 6, figs. 3, 4.

Lectotype of Pecten fibrosus J. Sowerby 1816, p. 84, pl. 136, fig. 2 designated Arkell, 1931 a, p. 114; BM 43305 (the original to the left hand figure of J. Sowerby's pl. 136, fig. 2); Pl. 10 , Fig. 21 herein; $\mathrm{H}: 25, \mathrm{~L}: 23.5, \mathrm{I}_{\mathrm{R}}: \mathrm{II}$, UA: 95; Corallian (Oxfordian), Oxford. Paralectotype; BM 43306 (the original to the right hand figure of J. Sowerby's pl. 136, fig. 2); Pl. 10, Fig. 20 herein; Kellaways Beds (L. Callovian) fide Arkell (1931a), Chatley, Somerset.

Text fig. 184: Radulopecten fibroszs - European distribution.

Text fig. 185: Radulopecten fibrosus - height/length.

Text tig. 186: Radulopecten fibrosus - height of anterior auricle/length.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Depressed, orbicular, with a rectangular beak, nine or ten broadish diverging grooves and numerous sharp concentric striac; ears equal, rectangular; margin undulated internally.

Rather longer than broad; the back is formed of two straight lines meeting at an angle, sometimes greater, but seldom less than a right angle; the undulations within the margin are regular and rather deep. The strize are composed of small very prominent sharp ridges that hold the shell lirmly to the stone in which it lies.

This is remarkable at first sight for its broad and few sulci, and for all the fine undulating transverse striae all over them. I have but seldom seen it in pairs but Mr. Strangeways has a pair from Carrington, Oxfordshire, and I have an excellent specimen from the Chatley Cornbrash, by favour of T. Mfade, esq. and a small one showing the inside from Ox fordshire. These last two are figured. Mr. Mantell. was so kind as to send me one from North Leach, Gloucestershire, which has only 9 costae, and Mrs. Gent has met with something similar, but plainer at Kellaways; if these should prove to be different species, 1 shall notice them again.'

2. AMENDED DIAGNOSIS

Distinguished from R. scarburgensis by the lack of radial striae, from R. inequicostutus by the larger number of plicae, from R. sigmarmgensis by the lamellose rather than spinose ornament and from all other species of Radulopecten by the lack of a non-plicate zone.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, growing allometrically (text fig. 185) to become more orbicular near the maximum height of 43.5 nm (BM L+2148). Umbonal angle increasing during ontogeny but relatively invariant at any one size (text fig. 187). Disc flanks low.

Text fig. 187: Radulopecten fibrosus - height/umbonal angle.

Equilateral, inequivalve, low convexity, left valve more convex than right. Intersinal distance greater in left valve than right, increasing with approximate isometry in both (text figs. 188, 189). Byssal notch depth variable, small to moderate.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. All auricles meeting hinge line at about 90°. Anterior auricle of right valve meeting disc at about 90°, remaining auricles meeting disc at an acute angle. All auricles ornamented with closely spaced comarginal striae.

Height of anterior auricle (text fig. 186) and lengths of anterior and posterior auricles (text figs. 190, 191) variable.

Left valve ornamented with between 10 and 13, usually 11, original plicae (text fig. 192), narrower than sulci. Height of plicae variable, usually moderately high in early representatives (e. g. Pl. 10, Fig. 8) but uniformly low in late forms (e.g. Pl. 10, Figs. 13, 16-18). Additional low plicae intercalated during ontogeny of forms with original plicae to give a maximum total number of 27 (BM 35563). Rate of intercalation apparently faster in some of the latest representatives (see Section 7). Forms with low plicae bearing evenly spaced comarginal lamellae on all parts of disc. Comarginal lamellae restricted to plical crests in forms with high plicae.

Right valve usually bearing one tess plica than left, with plicae wider than sulci and all parts of disc ornamented with closely spaced comarginl striae.

Shell thickness moderate in early representatives, low in later forms (see Section 7).

4. DISCUSSION

Of the two syntypes of 'Pecten' fibrosus J. Sowerby one (BM 43305 ; Pl. 10, Fig. 21) is seen only from the interior and
the other (BM 43306 ; Pl. 10, Fig. 20) is poorly preserved. Metric proportions (1) and general shape of the former, designated as lectotype by Arkell (1931 a), are, however, indistinguishable from the species described in Section 3 and since J. Sowfrby's name is the earliest available for this species it is known hereinafter as Radulopecten fibrosus. The second syntype (paralectotype) has metric proportions (2) within the range of R. fibrosus and the shape of the auricles confirms that it is a member of the latter species. The superficial similarity of the disc ornament in this specimen to that of R. scarburgensis (YOUNG and Bred) is presumably the reason for Phillips' (1829) misapplication of J. Sowfrby's specific name to an example of Youvg and Bird's species. Perhaps through following Philuips' rather than J. Sowerby's usage of ' P.' fibrosus, d'Orbigny (1850) applied this name to specimens (MNO 3397) of R. scarbutgensis and saw fit to erect a new species, 'P.' subfibrosus, for specimens (MNO 3754; Pl. 10, Fig. 22) which are in fact typical representatives of J. Sowerby's species. Other authors (Dayov, 1860, 1880; Roeder, 1882; Douville, 1916; Dechaseaux, 1936, pl. 6, figs. 18, 18 a, 19, pl. 7, fig. 1) have also applied J. Sowerby's specific name to examples of R. scarburgensis so with the evident possibility of misinterpretation of his hypodigm inadequately characterised records of his species in Lamarck (1836), Beav (1839), Oppfl (1858), Coquavd (1860), Laube (1867), Teruuem and Jourdy (1869), Kiliav and Guebhard (1905), Read et al. (1925), Barbulescu (197!) and Worssau and Ivimey-Coom (1971) can only be tentatively synonymised. Although most subsequent usages of ' P.' subfibrosus have been for forms which are undoubtedly within D'Orbigvy's hypodigm ($=$ R. fibrosus), DI Loriol (1901) describes under 'P.' ('Chlamys') subfibrosus specimens which are almost certainly representative of R. scarburgensis. Doubt must therefore be cast on the affinities of unfigured specimens referred to D'OrbIG vy's species by the same author in 1897,1900 and 1904, al-
though those described in 1894 do appear to belong to R. fibrosus. Coulavi's (1860) record of 'P.' subfibrosus is accompanied by neither a figure nor a description so it can only be tentatively synonymised. Bronn (1852) followed D'Orbigvy's interpretation of J. Sowerby's hypodigm but considered that specimens such as those forming the basis for ' P.' subfibrosus could only be distinguished at the varietal level. Thus forms belonging to R. scarburgensis were referred to as ' P. fibrosus α and forms belonging to R. fibrosus were referred to as 'P.' fibrosus β. Stoll's (193t) variety duplicostatus is nothing more than the quite common form of R. fibrosus in which intercalation of additional plicae has occurred.

Text fig. 188: Radulopecten fibrosus - intersinal distance on left valve/length.

Text fig. 189: Radulopecten fibrosus - intersinal distance on right valve/length.

Quinstedt's (1852) and E. Philippl's (1900) misapplication of J. Sowfrby's specific name to specimens of R. vagans is discussed under the latter species. Certain specimens illustrated by Dechaseauy (1936, pl. 6, fig. 20, pl. 7, figs. 2, 3)
under 'Aequpecten' fibrosus may also be referable to R. viagans although the horizon (Oxfordian) suggests that they more probably belong in R. inequicostatus. Specimens illustrated under 'P.' vagans by Davion $(1860,1880)$ and Borissiah and Ivanoff (1917) are clearly representative of R. fibrosus.
'P.' sulcatus Young and Bird and P. ('Ae.') tenuicostatus Stoll, both with 11-12 original plicae, are typical early representatives of R. fibrosus. The ligured specimen of ' P.' Vezadni Étallov (3) and the syntypes of Ch . ('Ae.') superfibrosa Arhell (OUM J8247-8252; Pl. 10, Figs. 11, 12; 4) are small late representatives with rather extreme depression of the plicae. Large late representatives of R. fibrosus with the characteristic numerous low plicae were incorrectly referred to 'P.' Midas d'Orbigny (a junior synonym ol Camptonectes (C.) auritus) by Dollfus (1863) and this misusage of D'Or. bIGNy's specilic name has been perpetuated by Damov (1880)

Text fig. 190: Radulopecten fibrosus - anterior hinge length/length.

[^4]and Arkell (1931a). It may therefore be that inadequately characterised specimens referred to o'Orbigny's species in de Loriol et al. (1872) and de Loriol and Pellat (1875) are in fact representatives of R. fibrosts.
The holotype (OD) of 'Ch.' (R.) drewtonensis Neale (BM 88737; Pl. 10, Fig. 24) has 13 plicae and most metric proportions (5) within the range of R. fibrosus. However, the byssal notch is abnormally large and may indicate that Neale's specimen is indeed a member of a different species. Nevertheless the paucity of comparable specimens makes it more likely that 'Ch.' (R.) drewtonensis represents extreme variation within R. fibrosts.
'Ch.'(R.) qualicostá Étallon: Chavan has irregular plicae but seems to be nearer R. fibrosus than Étallon's species ($=$ R. varians).
'P.' ('Ae.') Triboleti Rollier was compared with 'P.' fibrosus but the figured specimen is too poorly preserved to allow confident assignment to any species.
The affinities of ' P.' Tharmanni Contejean are discussed under R. vagans.
'P.' Sokolowi Borissiak and Ivanoff (erected for a form with 13 plicae which is inseparable from R. fibrosus) must be rejected as a junior primary hononym of 'P.' Sokolowi R_{E} тоwskı (? = Propeamussium (P.) nonarium q. v.).

Text fig. 192: Radulopecten fibrosus - frequency distribution for number of plicae on left valve.

5. STRATIGRAPHIC RANGE

There are no unequivocal records of R. fibrosus before the Callovian. Quevstedt's (1852) record of ' P.' fibrosus from the Bathonian in fact refers to R. vagans while Terquevand Jourdy's (1869) Bathonian record of 'P.' fibrosus is based on unfigured and therefore questionably conspecific specimens (see Section 4). The paralectotype (BM 43306), originally said to be from the Cornbrash (partly Bathonian), is more
probably from the Kellaways Beds (Arkel. , 1931a) and it seems likely that a specimen in the GPIG labelled 'Cornbrash, St. Etienne' is from the L. Callovian (Macrocephalus zone) part of that formation, the horizon at which R. fibrosus first occurs in Yorkshire (e. g. YM 592) and Pomerania (Stoll, 1934). In the former area the species is quite common in the Calloviense zone and the M. Callovian Coronatum zone. In the intervening Jason zone a few specimens are known from central England (Duff, 1978) and R. fibrosus seems to be fairly common at this horizon in the Moscow Basin (Lahu51 v, 1883) and Lithuania (Krenkel, 1915). The last two authors also cite material from the U . Callovian as do Borissian and Ivanoff (1917) from central Russia and Stoll (1934) from Pomerania. Makowsh's (1952) record of R. fibrosus from the Callovian of Poland is probably from the upper substage.
In the L. Oxfordian definite records froms the Mariae zone are restricted to a few specimens from Yorkshire (author's collection). In the Cordatum zone the species is however abundant and widespread, continuing thus through the Plicatilis zone and almost certainly also the Transversarium zone (U. Oxfordian). Specimens from the Normandy coast and Dorset are the only definite record of R. fibrosus in the Cautisnigrae zone; the specimens are nevertheless numerous. Material described by Roempr (1836) and Brauns (1874) from the coralliferous beds of the U . Oxfordian in N. W. Germany may possibly include some specimens from the Cautisnigrae zone since the Middle Coralline Oolite is apparently of this age (Arkell, 1956: 139). Some of Roemer's material was derived from the upper 'Coral Rag' which could well be of Decipiens zone age (Arkell, 1956: 139). These specimens are certainly at least as young as the earliest populations of R. fibrosus with depressed plicae seen in Dorset (see Section 7). Since Roempr did not consider it appropriate to apply any specific name other than ' P.' fibrosus J. Sowerby (syntypes with high plicae) to these specimens, it may be that they exhibit the high plicae characteristic of earlier populations. If so there would be clear evidence that forms with low plicae arose by splitting rather than phyletic change and it would be necessary to accord them a separate specific name (cf. p. 11). ROEMER, however mentions specimens with very low plicae in his description of ' P. fibrosus' and it could be that his material from the upper 'Coral Rag' is the source of this comment. Thus, pending examination of the material, the author prefers to adopt the view that the evolution of forms with low plicae took place phyletically and that they should therefore be referred to as R. fibrosus.
R. fibrosus is common and occurs widely in N. W. Europe in the Pseudocordata zone. L. Kimmeridgian records are however restricted to a few specimens from S. England (OUM J2363; BM L19919, L42148, L73018), and specimens from NW. (BM 25921, 33047, LL13479; Dollfus, 1863) and E. (Thur mann and Étallon, 1862) France. The latest zonally defined example is from the Cymodoce zone (BM L42148).

6. GEOGRAPHIC RANGE

R. fibrosus was essentially a Boreal species probably because of the widespread development of argillaceous facies (see Section 8) in the Tethyan region. Certain occurrences of the species are restricted to north-west, north, central and north-east Europe (text fig. 184) and are strongly correlated
with the development of arenaceous facies. The restriction of the range to E. Europe during the U. Callovian (see Section 5) cannot be explained by a lack of arenaceous facies elsewhere. At least in Yorkshire apparently suitable sediments (Hackness Rock) are well developed. However, in the latter area R. scarburgensis is common and it may be that the latter competitively excluded R. fibrosus (see Section 8).

The great reduction in population size which apparently occurred in the Cautisnigrae zone has no obvious explanation.

7. DESCRIPTION OF ECOLOGY

R. fibrosus first occurs commonly in the Kellaways Rock (Calloviense zone) of Yorkshire where it reaches a maximum height of 25 mm (author's collection). The sediments are sandstones, partly oolitic, containing a rather low diversity benthic fauna dominated by the bivalves Entolum (E.) corneolum, Pimna, Meleagrinella and Modiolus. A similar sedimentary and faunal association characterises occurrences in the Langdale Beds (Coronatum zone) of the same area and apart from Borissian and Ivanown's (1917) record from clay and Makowshr's (1952) record, possibly from clay, all occurrences in the Callovian of N. E. Europe (see Section 5) are known to be associated with similar sediments. Elsewhere R. fibrosus is rare in the Callovian although it is widespread in the L. and M. Callovian (see Section 5). A height of 37 mm is attained in the L./M. Callovian of Pomerania (Stoll, 1934). The great majority of Callovian specimens of R. fibrosus have elevated plicae.
In the Oxfordian of Britain specimens with elevated plicae are abundant in the calcareous sandstones of the Cordatum zone (L. Calcareous Grit), where they reach a maximum height of $26.5 \mathrm{~mm}(\mathrm{SbM})$, in biosparites of the Plicatilis zone (e. g. 'Trigonu' budlestom Bed [Pl. 10, Fig. 15], Shell-cum-Pebble Bed), where they reach a maximum height of 36.5 mm (OUM J9060), and in contemporaneous oolites (Hambleton and Malton Oolites). Examples of R. fibrosis with elevated plicae also occur in oolites in the Transversarium zone of Dorset ('Qualicosta' Bed). However, they are outnumbered 3 : \dagger by specimens of R. variuns. In marly oolites in the Cautisnigrae zone of the same area (in the 'Trigonia' clavellata Beds) R. fibrosus outnumbers R. varians $2: 1$, but both species are common. The great majority of specimens of the former species have low, albeit numerous, plicae (e. g. Pl .10 , Figs. 11, 12). The maximum height is 32 mm (author's collection). The associated fauna, as in L. and M. Oxfordian occurrences of R. fibrosus, is dominated by oysters and Myophorella. The fauna of sands in the Pseudocordata zone of Dorset (Sandsfoot Grit) where R. fibrosus is abundant, is dominated by Pinna (association B of Fursich, 1977) and is very reminiscent of Callovian occurrences of R. fibrosus. The maximum height attained is 39 mm (BM L84954). All specimens have thin shells with low plicae and the intercalary plicae appear to be added at a faster rate compared to earlier representatives (e. g. Pl. 10, Fig. 17, cf. also Figs. 13, 16).
R. strictus may be an associate in L. Kimmeridgian occurrences in France (see Section 5). In this substage R. fibrosus reaches a maximum height of 41 mm (BM L73018) in the Baylei zone and 43.5 mm (BM L+2148) in the Cymodoce zone. Ornmentation is as in the Pseudocordata zone.

Apart from those instances discussed above R. fibrosits is only known to be common in the Cordatum zone of Alsace (Rofder, 1882) and in the 'Oxfordian' of Normandy (MNO). Other isolated records appear to be mainly derived from coarse-grained sediments and the only occurrences of more than a few specimens in argillaceous facies are in the Nothe Clay (Plicatilis zone) and Clay Band (Cautisnigrae zone) of Dorset (author's collection).
R. fibrosus only occurs commonly with R. scarburgensis in the Cordatum zone of Alsace.

8. HNTERPRETATION OF ECOLOGY

It is clear from Section 7 that the high energy environment of arenaceous sedimentation was favourable to R. fibrosus.
The general rarity of R. fibrossts in argillaceous sediments could be due to competitive inferiority to R. scarburgensis, which is widespread in such sediments, rather than to an actual dislike of low energy depositional environments. Evidence for the latter view is provided by the local occurrence of numbers of R. fibrosus in clay horizons where R. scarburgensis is absent (Nothe Clay, Clay Band). The occurrence of numerous examples of R. fibrosus together with R. scarburgensis in the Cordatum zone of Alsace seems however to argue against any competitive reaction between the species. Nevertheless, it may be that the two species are derived from different horizons within the zone thus a lack of competition is not proven.
Competitive inferiority to R. variuns is perhaps suggested by the relative rarity of R. fibrosus in association with this species in apparently suitable sediments in the Transversarium zone. However it should be borne in mind that the shells have undoubtedly been transported and that the present disparity in numbers may not reflect the original situation. If competition is inferred in the Transversarium zone the common occurrence of both R. fibrosits and R. vartans in the Cautisnigrae zone of Dorset must be taken to imply a subsequent suppression of competition by niche partitioning.

There is little evidence of comperition with R. strictus, a probable descendant of R. viarians.

The size and morphology of R. fibrosus seems to be unrelated to environment.

9. FUNCTIONAL MORPHOLOGY

Although the hyssal notch is sometimes shallow, the small to moderate adult size allows that R. fibrosus could have been byssally attached throughout ontogeny. The reduced ornamentation of the right valve is paradigmatic for tight fixation. The depressed plication of the left valve characteristic of later populations of R. fibrosus is also paradigmatic for byssal fixation (on hard substrates) but it would have reduced the strength of the shell and consequently its ability to withstand predatory attacks. Since depression of the plicae results in greater streamlining it is additionally paradigmatic for swimming whereby, moreover, it is possible to avoid predation in a way other than by simply offering passive resistance. It may be that later populations of R. fibrosus moved into a new niche to avoid competition with R. variars and adoption of the free-living mode of life postulated above (contrasting with
the byssate mode of life of R. varians) may have been the relevant move. In inferring adaptive value for the morphology of later forms of R. fibrosus on the basis of the above argument it should be borne in mind that the evidence for competition between R. fibrosus and R. varians (in the Transversarium zone) is very weak (see Section 8) and that if the species did not compete it cannot be inferred that there was subsequent niche partitioning.

10. ORIGINS AND EVOLUTION

The most likely ancestor for R. fibrosus is R. vagans and since the first occurrence of the former is within the geographic range of the latter the possibility of sympatric speciation cannot be ruled out. R. fibrosus can be viewed as the product of 'genetic assimilation' and heterochronic acceleration in variants of R. vagans with $10-13$ initial plicae (cf. R. varians). Such variants are, however, uncommon so simple regulatory changes, as implied by the above, may not have been the sole cause of evolution.

The lower mean plical height characteristic of Cautisnigrae zone and later populations of R. fibrosus is a reflection not only of the loss of forms with elevated plicae but also of the addition of forms with lower plicae than even the most extreme representatives (e. g. Pl. 10, Fig. 10) of earlier populations. Evolution must therefore have involved some addition to the gene pool.

On the basis of a specimen (Pl. 10, Fig. 7) from a loose block with relatively high plicae, the author previously concluded (Johnson, 1980) that mean plical height was slightly greater in the Cautisnigrae zone than in the later Pseudocordata zone. A somewhat protracted episode of evolution in R. fibrosus would thus have been evinced (spanning several zones). However, re-examination of the specimen's matrix suggests that it may well be derived from the 'Qualicosta' Bed (Transversarium zone) thus there may have been no change in mean plical height between the Cautisnigrae and Pseudocordata zones. Evidence that evolution in R. fibrosus was indeed compressed into a short period of time is supplied by material from Linton Hill, Abbotsbury, Dorset. Here forms with elevated plicae (recorded as 'Chlamys' fibrosa) were recovered by Arkell (1936b: 88) from the Sandy Block (uppermost Transversarium zone) while the author has recovered a specimen with low plicae from a horizon only 2 m higher (in Arkell's bed 5).

The fact that the reduction in the plical height of R. fibrosus apparently occurred at the very end of the Transversarium zone argues against any idea of change as a response to the (rather earlier) appearance of R. varians and thus renders implausible the adaptive explanation advanced in Section 9. The alternative explanation, that change was through genetic drift and involved no increase in the level of adaptation, must be considered reasonable because R. fibrosus apparently suffered a population crash (as would promote change through genetic drift) at the time of evolution (see Section 5).

It is possible that the apparent increase in the rate of plical intercalation between the Cautisnigrae and Pseudocordata zones is an illusion created by the larger size of specimens from the latter zone. Even if it is real it is a much less marked change than the slightly earlier reduction in plical height. The
reduction in shell thickness in the Pseudocordata zone could well be a product of CaCo_{3} dissolution in the porous sandstones of this zone.

Although R. fibrosus exhibits an overall phyletic increase in maximum height the pattern of change from 25 mm (L. Callovian; ? 37 mm [Stole, 1934]) to 26.5 mm (L. Oxfordian) to 36.5 mm (M. Oxfordian) to 32 mm (U. Oxfordian, Cautisnigrae zone) to 39 mm (U. Oxfordian, Pseudocordata zone) to 41.5 mm (L. Kimmeridgian, Baylei zone) to 43.5 (L. Kimmeridgian, Cymodoce zone) is somewhat oscillatory.

The decline and extinction of R. fibrosus in the Kimmeridgian may relate to the widespread development of argillaceous facies (see Section 8).

Radulopecten scarburgensis (YOUNG and Bird 1822)
Pl. 10, Figs. 23, 25-29, ?Fig. 19, ?PI. 11, Figs. 1, 3; text figs. 193-200

Synonymy

1822 Pecten Scarburgensls sp. nov; Young and Bird, p. 234, pl. 9, fig. 10.

1829 Pecten fibrosus J. Sowerby; Phillips, pl. 6, fig. 3 (non J. Sowerby sp.).
v* 1833 Pecten subarmatus sp. nov; MUNSTER in Gold. FUSS, p. 47, pl. 90, fig. 8.
$v * ? 1833$ Pecten subcancellatus sp. nov; MUNsTER in GOLDFuss, p. 47, pl. 90, figs. 9a-c.
1845 Pecten discrepans sp. nov; Brown, p. 157.
v 1850 Pecten fibrosus J. Sowfrby; D'Orbigny, v. 1, p. 341 (non J. Sowerby sp.).

1852 Pecten fibrosus a var. nov; Bronn, p. 211 (non J. Sowerby sp.).
v non 1858 Pectensubarmatus MUNSter: Quenstedt, p. 754, pl. 92, figs. 8, 9.
1859 Pecten Bavoux sp. nov; CONTEJEAN, p. 316, pl. 23, fig. 6.
1860 Pecten fiburosus J. Sowerby; Damon, pl. 3, figs. 1, 1a (non J. Sowerby sp.).
1862 Pecten Laurae sp. nov; Étallon in Thurmann and Étallon, p. 253, pl. 35, fig. 6.
1864 Pecten cf. Laurae Étallon; v. Seebach, p. 98.
1878 Pecten subarmatus MUNSTER; DF LORIOL, P. 158, pl. 22, fig. 2.
1880 Pecten fibrosus J. Sowerby; Damon, pl. 3, figs. 1, la (non J. Sowerby sp.).
1881 Pecten subarmatus Munster; de Loriol, p. 85, pl. 12, figs. 2-4.
1882 Pecten fibrosus J. Sowerby; Roeder, p. 50, pl. 1. figs. 11a, 11b (non J. Sowerby sp.).
1894 Pecten Laurae Étallon: De Loriol, p. 47, pl. 5, fig. 5, pl. 6, fig. 3.
1897 Pecten Latrae; Étalion; de Loriol, p. 127.
1901 Pecten (Chlamys) subfibrosus D'Orbigny; DE Loriol, p. 106 (non d'Orbigny sp.).
1904 Pecten (Chlamys) Laurae Étalion; DE Loriol, p. 218.
v 1905 Pecten Laurae Étallon; Peron, p. 216.
1910 Chlamys subarmata (MUNSTER); Lissajous, p. 361, pl. 10. fig. 1.
? 1915 Pecten (Aequipecten) sp. nov; Rollier, p. 470, pl. 31, figs. 1a-c.
1915 Pecten (Aequipecten) Catharinae sp. nov; RolLIER, p. 472, pl. 30, figs. 8-10.
v 1916 Pecten fibrosus J. Sowerby; Douvillé, p. 74, pl. 10, figs. 1a, 1b (non J. Sowerby sp.).

```
        1917 Pecten submaequicostatus KASANSKY; BORISSIAK
        and IVANOFF, p. 40, pl. 2, figs. 2-4.
        1917 Pecten Laurae Etalion; Borissiak and Ivanoff,
        p. 44, pl. 2, fig. 1.
        1917 Pecten subarmatus MUNSTER; BORISSIAK and
        1vaNOFF, p. 45, pl. 2, figs. 5, 6.
    ? 1921 Chlamys articulatus (SCHLOTHEIM); NEWTON,
        p. 395, pl. 11, fig. }7\mathrm{ (non SchlOtherm sp.).
    1926 Pecten Laurae Etallon; Roman, p. }193
    1926 Chlamys subarmata (MUNSTER); ROMAN, pp. 194,
        196.
    p }1926\mathrm{ Aequipecten subarmatus (MUNSTER); STAESCHE,
        p. }68
(?)1926 Aequmpecten subcancellatus (MUNSTER); STAE
        SCHE, p. }70
        1933 Pecten (Aequipecten) aff. subarmatus (MONSTER);
        Diftrich, p. 65, pl. 9, fig. }140
    1935a Chlamys scarburgensis (YOUNG and BIRD); AR-
        KEIL, p. xiii.
v*?1936 Chlamys (Radulopecten) tipperi sp. nov; CON,
        p. 18, pl. 1, figs. 1-5.
    v 1936 Aequpecten fibrosus (J. Sowfrby); DECHASEAUX,
        p. 47, pl.6, figs. 18, 18a, 19, pl. 7, fig. 1;? pl.6,
        figs. 15, 16, 16a; non pl. 6, figs. 17, 17a, 20, pl.7,
        figs. 2, 3 (non J. SOW'ErBY sp.).
        1936 Aequipecten Laurae (ÉTALloN); DechasEAUX,
        p. 49.
    v 1936 Aequipecten cf. Laurae (ÉtAllON); DECHAS-
        EAUX, pl. 7, figs. 4, 4a, 5, 5a.
    1939 Chlamys cf. Laurae (EtTallon); Stefanini,
        p. 182, pl. 20, figs. 7, 8.
    1948 Chlamys (Radulopecten) sarburgensis (YOUNG
        and Bird); COK and Arkfll, p. 13.
v*?}1952\mathrm{ Chlamys (Radulopecten) moondanenses sp. nov;
        COX, p. 12, pl. 1, fig. 13, pl. 2, fig. }7
        1958 Chlamys (Radulopecten) scarburgensis (YOUNG
        and Bird); R. Hudson, p. }420
        1965 Chlamys (Radulopecten?) kinjeleenses sp. nov;
        COx, p. 57, pl. 17, figs. 6a, 6b, 7a, 7b.
        1969 Chlamys scarburgensis (YOUNG and Bird);
        J. Hudson and Palframan, p. }394
        1970 Aequipecten cf. subarmatus (MUNSTER); BEHMFL,
        p.6.2.
pv1978 Chlamys (Radulopecten) scarburgensis (YouNG
        and BIRD); DUFF, p. 70, pl. 5, figs. 19, 20, 23, 24,
        26, 27, pl. 6, figs. 1, 5,6.
Neotype of Pecten Scarburgensis Young and Bird 1822, p. 234, pl. 9, fig. 10 designated by Dufe, 1978, p. 71; SM J12398; figured Duff, 1978, pl. 5, fig. 27; Hackness Rock (U. Callovian), Scarborough, Yorkshire.
```


1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Fig. 10 represents the inside of a handsome shell, of a larger size and more oblong shape [than 'P.' fibrosus J. Sow' ERBY].from the hard sandstone at the foot of Scarborough Cas-

Text lig. 193: Radulopecten scarburgensis - frequency distribution for number of plicae on left valve.
tle. Some specimens are three inches long, but it is very difficult to get any entire. Both valves are convex, and as in No. 12, are closely invested with transverse membranaceous striae, somewhat sharp and rough, crossing both the ribs and the intermediate grooves. There are nine ribs, which are broad and rather flat, but each has an elevated ridge running along the middle of it, surmounted here and there by oblong spines, or sharp scales, crossing the ridge. As this species does not appear to have been hitherto described, we may name it p. Scarburgensis.'

2. AMENDED DIAGNOSIS

Distinguished from R. fibrosus by the presence of radial striae, from R. sigmaringensis by the presence of comarginal lamellae rather than spines, from R. inequicostatus by the equality of the initial plicae and from all other species of Radulopecten by the lack of a non-plicate zone.

3. AMENDED DESCRIPTION

Essentially similar to R. fibrosus, differing by the larger maximum height (92 mm, MNP; possibly 170 mm , see Section 4), more variable umbonal angle (text fig. 195), somewhat greater convexity, and tendency for the right valve to be the more convex, by the more equal-sized auricles and tendency for all the auricles to meet the hinge-line at an acute angle and of the anterior auricle of the right valve to meet the disc at an obtuse angle, by the generally smaller byssal notch and by the ornament of the disc (other metric proportions plotted in text figs. 194, 196-8).

Left valve bearing between 8 and 11 original plicae (text fig. 193), width and height variable both between individuals and in ontogeny. Forms with narrow plicae late in ontogeny adding to number by intercalation (e. g. Pl. 10, Fig. 27). Plicae bearing variably spaced comarginal lamellae; spacing strongly correlated with plical height (e. g. Pl. 10, Fig. 23). Sulci with or without comarginal lamellae; presence strongly correlated with relatively close spacing of plical tamellae (compare Pl. 10, Figs. 28 and 29).

Right valve usually bearing one more plica than left. Closely spaced comarginal striae on both plicae and sulci, sometimes raised into lamellae on the most anterior and posterior of the plicae (Pl. 10, Fig. 26) and on the ventral part of the medial plicae in large specimens. Both valves bearing numerous fine radial striae in the umbonal region.

Shell thickness usually moderate but becoming quite high in large specimens.

4. DISCUSSION

Although the type material of 'pecten' Scarburgensis Youvg and Bird appears to have been lost, mention in the original description (see Section 1) of 'nine ribs' can leave little doubt that it was representative of the species deseribed in Section 3 rather than the species with which it was compared ('P.' fibrosus J. Sowerbr). Moreover, the type locality, at the foot of Scarborough Castle, is at a horizon (Hackness Rock) at which the former species is common (see Section 7) but at which the latter appears to be absent. Accordingly the species

Text fig. 194: Radulopecten scarburgensts - height/length.
described in Section 3 is known hereinafter as Radulopecten scarburgensis. Duff (1978) has designated as neotype a left valve (SM J12398) whose plicae are initially high and fairly wide but become relatively low and somewhat narrow later in ontogeny, and whose plical lamellae are fairly widely spaced early in ontogeny and closely spaced later, but continuous across the sulci at all stages of growth.
Phillips (1829) and d'Orbigny (1850) misinterpreted J. Sowerby's (1816) hypodigm for 'P.' fibrosus and applied this name to specimens of R. scarburgensis. Subsequently, numerous authors have similarly misapplied J. Sowerby's specific name (see R. fibrosus for a fuller discussion). Brown (1845) realised Phillips' mistake and erected ' P.' discrepans for the latter's figured specimen. d'Orbigny's species ' P.' subfibrosus, erected for forms which are in fact identical to J. Sowfrby's species, was itself misapplied by de Loriol (1901, ? 1897, ? 1900, ? 1904) to specimens of R. scarburgensis.

The left valve of the figured syntype of ' P.' subarmatus Munster (BSPHG AS VII 621; Pl. 10, Fig. 29; 1) has high and moderately wide plicae throughout ontogeny and widely spaced plical lamellae which are not continuous across the sulci. Quenstedt (1858) applied Munster's specific name to a specimen (GPIT') which has the conical spines diagnostic of R. sigmaringensis. By citing specimens from the Tithonian of S. W. Germany (see Section 5 and p. 217) and including ' P.' ("Aequipecten') Sigmaringensis in his synonymy, Staesche (1926) indicates that his concept of 'Ae.' subarmatus included forms which are referable to R. sigmaringensis as well as to R. scarburgensis.

The sole observed type of ' P.' subcancellatus Munster (BSPHG) is a small left valve ($\mathrm{H}: 17$) with low, narrow plicae and continuous comarginal lamellae. The abnormally small number of plicae (7) and low H/UA (2) may distinguish it from R. scarburgensis.

Text fig. 195: Radulopecten scarburgensis - height/umbonal angle.

Text fig. 196: Radulopecten scarburgensis - intersinal distance on right valve/length.

The figures of 'P.' Bavoux Contejean (3) and ' P.' Laurae Étallon depict specimens with narrow original plicae and numerous intercalaries.
'P.' ('Ae.) Catharinae Rollier was said to be between ' P.' Laurae and ' P.' subarmatus and therefore cannot be accorded a specific distinction in the light of the preceding discussion. ' P.' ('Ae.') sp. nov; Roller was said to be a "muta-
tion' of 'P.' Laurae. The figured specimen is too poorly preserved for specific determination.
'Chlamys' (R.) tipperi Cox and 'Ch.' (R.) moondanensis Cox were both compared to 'P.' Laurae. The former comes from an anomalously early horizon (Bajocian) for R. scarburgensis and the paratype (BM L63157) has an unusually high H/UA (4). The latter comes from an abnormally late

Text fig. 197: Radulopecten scarburgensis - anterior hinge length/length.

Text fig. 198: Radulopecten scarburgensis - posterior hinge length/length.
horizon (Tithonian) and the paratype (BM L75243; Pl. 11 , Fig. 1), a right valve, has rather widely spaced comarginal ornament. This could, however, be due to its exceptional size $(\mathrm{H}:=170)$. 'Ch.' (R.) kimjeleensis Con was compared to 'Ch.' (R.) inacquicostata ($=R$. inequicostatus herein) but the presence of 10 plicae allies it with R. scarburgensis although the byssal notch is unusually deep for the latter species.
The original description of ' P.' subinaequicostatus Kasavsky has proved impossible to trace but Borissiak and 1VANOFF's (1917) specimen figured under this name (5) has 9 plicae and is indistinguishable from R. scarburgensis.

Nfiton's (1921) figure of 'Ch.' artuchlatus (Schlothemi) is much closer to R. scarburgenses than to Schlothein's species $(?=R$. mequicostutus).

5. STRATIGRAPHIC RANGE

With the exception of a doubtful occurrence in the Bajocian of Iran (Cos, 1936; see Section 4) there are no records of R. scarburgensis until the L . Callovian when a few specimens are known from the Keflaways Rock (Calloviense zone) of Yorkshire (BM il 1030 , Y'M 605e) and Wiltshire (DuFF, 1978) and from the L. Oxford Clay (Calloviense zone) of Bedfordshire (Durf, 1978). A specimen from the U. Cornbrash (Macrocephalus zone) of Yorkshire (BMF 47431 ; Pl. 10, Fig. 19) may be a slightly earlier representative of R. scarburgensis but the possibility cannot be excluded that it is an extreme variant of R. fibrosus. All remaining substagedefined records of R. scurburgensis in the Callovian are from the U. Callovian, where the species is locally common (see Section 7).

The species is locally common throughout the Oxfordian but undoubted Kimmeridgian records are limited to three specimens from S. W. Germany (GPIT, BSPHG [2]), and a few from the Jura (Contejfan, 1859; be Loriol, 1878, 1881). Stffanini (1939) records an indeterminate number of specimens Irom the Oxfordian/Kimmeridgian of Somalia and Dietrich (1933) records a single specimen from the "Kimmeridgian/Portlandian' of T'anzania.

The species may occur in the Tithonian of Cutch, N. W. India (Coy, 1952; see Section 4).

6. GEOGRAPHIC RANGE

In the Callovian and Oxfordian R. scarburgensis was a widespread species in Europe (text fig. 199) and extended along the southern margin of Tethys at least as far as the equator (text fig. 200). Within this region local distribution was largely related to the development of argillaceous facies (see Section 8). The absence of the species from such facies in the Kimmeridgian of N. W. Europe is roughly correlated with its first occurrence at the southerly palaeolatitude of Tanzania (see Section 5) and seems to imply a wholesale southward migration.

7. DESCRIPTION OF ECOLOGY

R. scarburgensts occurs commonly in clays of the Lamberti zone (U. Callovian) in Buckinghamshire (J. Hudson and Palframan, 1969) in association with a benthic fauna dominated by Pinna and Gryphaea. The maximum height attained is 50 mm (OUM J9548). The species is also quite common in roughly contemporaneous chamosite oolith-bearing sandstones in Yorkshire (Hackness Rock). Youvg and Brad (1822) cite specimens $3^{\prime \prime}(76 \mathrm{~mm})$ long from this horizon although the largest known museum specimen (Duff, 1978) has a length of only $41.5 \mathrm{~mm}(\mathrm{H}: \simeq 48)$.

In France, R. scarburgensis is quite common in the U. Callovian clays of the Dijon area (DM) where a maximum height of 55 mm is attained. Numerous 'Callovian' museum specimens (MNO) from Normandy and Sarthe are almost certainly derived from similar facies and may well be contemporaneous. The maximum height is 76 mm . Although not common R. scarburgenses also occurs in argillaceous facies in the U. Callovian of Dorset (BM unnumbered), E. Spain (Bfhmel, 1970), central Russia (Borissian and Ivanoff, 1917) and S. Israel (R. Hudson, 1958). Other Callovian records are limited to two specimens (BM LL30877-8) from muddy sandstones in Portugal, an indeterminate number of specimens,

Text fig. 199: Radulopecten scarburgensis - European distribution.

Text fig. 200: Radulopecten scarburgensis - World distribution (Callovian reconstruction).
probably from similar facies, in the Caucasus (Borissiak and 1Vanoff, 1917) and the tew specimens from the lowest substage mentioned in Section 5.
The great majority of Callovian examples of R. scarburgensis have initially high original plicae which subsequently undergo an allometric reduction in height such that the comarginal lamellae on the left valve, after being widely spaced early in ontogeny, become relatively closely spaced. The original plicae are usually fairly wide throughout ontogeny so that development of intercalary plicae is not common. Pl. 10, Fig. 28 illustrates a typical specimen.

In the L. Oxfordian R. scarburgensis occurs quite commonly in the 'Terrain à Chailles' of Alsace (Roeder, 1882) and the Yonne (Peron, 1905). The species also occurs commonly in the marls and marly limestones of the 'Oxfordien Supérieur et Moyen' of the Ledonian Jura (De Loriol, 1904) and in similar facies at an unspecified horizon in the Oxfordian of Sinai (Douville, 1916). Museum specimens (NM) from the coral-rich U. Oxfordian sediments of Meurthe and Moselle are fairly common and reach a maximum height of 90 mm . Museum specimens (MNP) from similar facies in the U. Oxfordian of the Yonne are also not uncommon and reach a maximum height of 92 mm . R. scarburgensis does not appear to be common elsewhere in the Oxfordian. Specimens from the coral-rich L. Oxfordian of the Bernese Jura (de Loriol, 1894), from coralliferous limestones and marls in the U . Oxfordian of the Rhone (Lissajous, 1910; Roman, 1926) and from clays of the L. Oxfordian in central England (BM LL7546) constitute the only other records where facies are known.
A high proportion of Oxfordian specimens of R. scarburgensis have initially low plicae but plical height usually increases isometrically (e. g. Pl. 10, Fig. 27) as it also does in specimens with initially high plicae. Consequently forms with initially widely spaced and forms with initially closely spaced comarginal lamellae are both well represented but forms with closely spaced lamellae late in ontogeny are quite rare. A fairly high proportion of specimens have narrow orig-
inal plicae late in ontogeny so development of intercalary plicae is quite frequent (e. g. Pl. 10, Fig. 27).

All of the relatively few European Kimmeridgian records (see Secrion 5) excepting Contejean's (1859) single specimen (from coral/Diceras facies) are derived from argillaceous sediments. The pattern of ornamental variation is much the same as in the Oxfordian except that forms whose plicae undergo an allometric reduction in height (and which consequently have closely spaced lamellae late in ontogeny) are apparently absent. Pl. 10, Fig. 29 illustrates a Kimmeridgian specimen.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that the low energy environment of argillaceous sedimentation was favourable for R. scarburgensis. The species could not, however, tolerate low energy conditions where accompanied by reduced oxygen tension (e. g. L. Oxford Clay of England).

The isolated occurrence of numerous specimens of R. scarburgensis in arenaceous sediments in the U . Callovian of Yorkshire indicates that high energy environments could be tolerated and this seems to be emphasised by the fairly common occurrence and large size of specimens in the coralrich U . Oxfordian of the lonne and Meurthe and Moselle. In the latter cases, however, the micritic matrix of museum specimens suggests that the species may have colonised low energy inter-reef lime muds.

Chlamys septcmradiata, a Recent free-living species which inhabits deep water muds in the First of Clyde (J. Allen, 1953), is a close morphological analogue of R. scarburgensis.

9. FUNCTIONAL MORPHOLOGY

The small byssal notch and equal auricles of most specimens of R. scarburgensis imply abandonment of byssal fixation in favour of reclining at an early age. Even in forms with a moderately deep byssal notch it is very doubtful whether attachment was maintained to heights anywhere near the max-
imum. All examples of the Recent analogue Cb. septemradiata observed by the author, including specimens as small as $\mathrm{H}: 30$, were free living.

Ontogenetic increase in umbonal angle is paradigmatic for prolonging swimming ability, presumably as a means of escaping predators. Shell thickening in large specimens is nonparadigmatic but may represent a switch to a 'siege' policy towards predators late in life.

The lack of comarginal lamellae on the medial plicae of the right valve at all but the latest ontogenetic stages could be due to inhibited growth through contact with the substrate (Staesche, 1926) but is more probably due to swimming activity (see above) leading to abrasion.

10. ORIGINS AND EVOLUTION

The most likely ancestor for R. scarburgensis is R. vaguns. The important changes in morphology, the early development and relatively invariant number of initial plicae, could have been brought about by heterochronic acceleration and 'genetic assimilation' (Waddingtov, 1957) so modifications of the regulatory system may underlie the greater part of trans-specific evolution.

There is no reason to suppose that the stratigraphic change in the mean form of the ornament of R. scarburgensis (see Section 7) is anything other than an evolutionary phenomenon. Since there appears to be no addition to the range of ornamental variation the change in mean form could have resulted purely from selection (i. e. without addition to the gene pool). The reason for this phyletic evolution is not apparent.

The maximum height of available museum specimens increases from the Callovian (76 mm) to the Oxfordian (92 mm). The Kimmeridgian value (59 mm ; BSPHG AS VII 621) is derived from a very small sample (see Section 5) and therefore does not necessarily imply reversal of a phyletic trend towards greater size. Possibly conspecific specimens from the Tithonian (see Section 4) have a maximum height of 170 mm .

Although the Kimmeridgian decline of R. scarburgensis is contemporaneous with the first records of R. stgmaringensis there is no reason to suppose thai the former was outcompeted by the latter as R. sigmaringensis is a very rare species in the Kimmeridgian.

Radulopecten sigmaringensis (Rollier 1915)

Pl. 11, Figs. 5, 6; text figs. 201, 202

Synonymy

v 1858 Pectensubamatus Munster: Quenstedt, p. 754, pl. 72, figs. 8, 9 (non MUNSTER sp.).
$\mathrm{v}^{*} 1915$ Pecten (Aequipecten) Sigmaringensis sp. nov; Rollier, p. 474.
p 1926 Aequipecten subarmatus (MUNSTER); Staesche, p. 68 (non MUNSTER sp.).

Holotype (M) of Pecten (Aequipecten) Sigmaringensis Rollifr 1915, p. 474; GPIT 4-72-8; figured Quenstedt, 1858, pl. 72, figs. 8, 9; Pl. 11, Fig. 6 herein; H:27.5, L:24,

HAA: 5.5, AH: 7, PH: 7, $\mathrm{I}_{\mathrm{R}}: 13, \mathrm{~N}: 1$, PL: 12, UA: 92; Malm ζ (L./M. Tithonian), Jungnau, S. W. Germany.

1. ORtGINAL DtAGNOSIS AND DESCRIPTION

'Le 'P.' subarmatus figuré par Quenstedt, Jura (1858), p. 754, 758, t. 92, f. 8-9, du Danubien infér. (W. Jura̧) des environs de Sigmaringen (Hohrain) ne répond plus du tout à l'espece du Crussolien, elle est beaucoup plus aigü (angle apical 88°) sans costules intermédiaires, et portant des écailles coniques, pointues. Je propose de l'appeler P. (Ae.) Sitmaringenses sp. nov. i.f. Qu. P. subarmatus, non Goldf.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of Rudulopecten by the spinose rather than lamellose ornament on the plicae.

Text fig. 201: Radulopecten sigmarmgensus - height/length.

3. AMENDED DESCRIPTION

Essentially very similar to R. scarburgensis, differing only by the diagnostic feature (see Section 2; Pl. 11, Fig. 5), by the invariant number of original plicae (LV: 11, RV: 12), by the rarity of intercalary plicae and by the smaller maximum size ($L_{\text {max }}$: 68: GPIT). H/L and H/UA are plotted in text figs. 201, 202.

4. DISCUSSION

A number of examples of the species described in Section 3 in the GPIT are wrongly labelled Pecten subarmatus MONsTER $(=$ Radulopecten scarburgensis $)$, including the specimen (Pl. 11, Fig. 6; 1) figured by Quenstedt (1858). The latter formed the basis for ' P.' ('Aequipecten') Sigmaringensis Rol. 1 IFR and becomes ipso facto the holotype (M).
Staeschf's (1926) record of 'Ae.' subarmatus is discussed under R. scarburgenses.

Text fig. 202: Radulopecten sigmaringensis - height/umbonal angle.

5. STRATIGRAPHIC RANGE

Three specimens (GPIT) from the Malm ϵ (Kimmeridgian) constitute the earliest records of R. sigmaringensis. All other records are from the Malm ζ (L./M. Tithonian) apart from a single specimen (MNS) from the 'Portlandian' (U. Tithonian).

6. GEOGRAPHIC RANGE

All records of R. sigmaringensis are from S . W. Germany except for the single U. Tithonian specimen which is from Nantua (French Jura).

7. DESCRIPTION OF ECOLOGY

Four of the twelve 'Malm ξ ' specimens (GPIT[11], BM; see Section 5) are also labelled 'Zementmergel' and by the similarity of the matrix it seems probable that the remaining specimens are likewise derived from this formation, a L. Tithonian marl sequence.

Specimens from the Kimmeridgian and U. Tithonian are derived from marly limestones.

8. INTERPRETATION OF ECOLOGY

The fine-grained sediments in which R. sigmaringensis is found probably afforded a soft substrate at the time of deposition.

9. FUNCTIONAL MORPHOLOGY

Since R. sigmaringensis is morphologically almost identical to R. scarburgensis a similar reclining mode of life after a brief byssate phase can be inferred.

The function, if any, of the plical spines of R. sigmanngensis is, like the plical lamellae of R. scarburgensis, unclear.

The fuller development on the left valve and small size of both spines and lamellae rules out any possibility that they might represent a 'snow-shoe' adaptation to the soft substrates occupied by R. sigmarnngensis and R. scarburgensss.

10. ORIGINS AND EVOLUTION

R. sigmaringensis almost certainly arose from R. scarburgensis and since the former species is first known within the geographic range of the latter the possibility of sympatric speciation cannot be ruled out. The development of spines rather than lamellae cannot be explained by heterochrony so trans-specific evolution probably involved some change in the structural genome.
The few available specimens (16) give no indication of any phyletic trends in R. sigmaringensis. The largest specimen (L: 68; GPIT) is from the L. Tithonian.

Radulopecten inequicostatus (Young and Bird 1822)
PI. 11, Figs. 2, 4, 7-9; text figs. 203-213
Synonymy
? 1820 Pectinites articulatus sp. nov; SCHlOTHEIM, p. 227
1822 Pecten inequicastatus sp. nov; YOUNG and BIrd, p. 235, pl. 9, fig. 7.

1829 Pecten inaequicostata sp. nov; Phillips, p. 129, pl. 4, fig. 40.
v non 1833 Pecten articulatus (SCHLOTHEIM); GOLDFUSS, p. 47, pl. 90 , fig. 10.

1836 Pecten octocostatus sp. nov; ROEMER, p. 69, pl. 3, fig. 18.

Text fig. 203: Radtulopecten mequcostatus - height/lengh.

1839 Pecten septemcostaths sp. nov; Roemer, p. 212.
? 1839 Pecten inaequitostata Phillirs; Bean. p. 60.
v*1850 Pecten corallinus sp. nov; D'Orbigny, v. 2, p. 22 (Boule, 1929, v. 18, p. 172, pl. 19, fig. 18).
? 1852 Pecten biplex sp. nov; BuVIGNiER, p. 23, pl. 19, figs. 1-6.
non 1853 Pecten artaculatus (SChlotheim); Morris and Lycett, p. 32, pl. 33, fig. 12.
non 1853 Pecten articulatus (Schlotheim); Chapuis and Dewalque, p. 212, pl. 29, fig. 3.
v non 1858 Pecten articulatus (Schlotheim); Quenstedt, p. 754, pl. 92, fig. 11.

1860 Pecten corallinzs D'Orbignt; CoQuand, p. 79.
1862 Pecten octocostatus Roemer; Thurmann and Étallon, p. 252, pl. 35, fig. 7.
non 1862 Pecten articulatus (SChlotheim); Thurmannand Étallon, p. 255, pl. 36, fig. 2.
? 1862 Pecten semiplicaths sp. nov; Thurmann and Étallon, p. 261, pl. 36, fig. 17.

1866 Pecten maequicostatus Phillips; Oppes, p. 290.

Pecten maequicostatus Phillips; Peron, p. 218.
? 1905 Pecten (Aequipecten) octocostatus Roemer; Kilian and Guébhard, p. 766.
? 1905 Pecten (Aequipecten) cf. inaequizostatus Phillips; Kilian and Guébhard, p. 805.

? 1915	Pecten sp. (inaequicostatus Phillips?); Krenkel, p. 297.
? 1915	Pecten sp. (sp. nova?); Krenkel, p. 298.
$\mathrm{v}^{\text {B }}$ non 1916	Chlamys articulata var. notgroviensis var. nov; Paris and Richardoson, p. 525, pl. 45, fig. 2.
v^{*} non 1916	Chlamys articulata var. sauzeana var. nov; PARIs and Richardson, p. 526, pl. 45, figs. 3a, 3b.
non 1920	Pecten articulatus (Schlotheim); Faure-MarGUERIT, p. 59.
поп 1920	Pecten articulatus (SCHLOTHEIM) var. passant à Pecten anastomoplicus Gemmellaro and Di Blasi; Faure-Marguerit, p. 59.
? 1925	Pecten cf. tnaequicostatus Phillips; Read et al., p. 81.
1926	Chlamys inaequicostata (Phillips); ROMAN, p. 194.
v 1926	Aequipecten inaequicostatus (Phillips); Arkell, p. 545, pl. 34, fig. 1.
v 1931a	Chlamys (Radulopecten) inaequicostatus (PHILLips); Arkell, p. 118, (1930a) pl. 8, figs. 4-7.
1935a	Chlamys inequicostata (YOUNG and Bird); Arkell, p. xiv.
1935a	Chlamys (Aequipecten) sp; COX, p. 177, pl. 23, fig. 8.

1936a Chlamys (Radulopecten) inequicostata (YOUNG and Bird); Arkell, pl. 52, figs. 1, 3.
? 1936 Aequipecten biplex (Buvignier); Dechaseaux, p. 150.

1936 Aequipecten inaequicostatus (Phillips); DechasEAUX, p. 51, pl. 7, fig. 6.
1936 Aequipecten ursannensis (DE LORIOL); DECHAS EAUX, p. 57, pl. 8, fig. 7.
? 1936 Aequipecten semiplicatus (ÉTALLON); DECHAS EAUX, p. 58.
1958 Chlamys (Radulopecten) cf. inacquicostata (PHIL LiPS); R. Hudson, p. 423.
? 1959 Chlamys (Radulopecten) nagatakensis KURATA and Kimura; Tamura, p. 58, pl. 6, figs. 31, 32.
1965 Chlamys (Radulopecten) inaequicostata (PHilLIPS); COX, p. 59, pl. 7, fig. 6.
1971 Chlamys (Radulopecten) inaequicostata (PHILLIPS); WORSSAM and 1VIMEY-COOK, p. 40.

Neotype of Pecten inequicostatus Young and Bird 1822, p. 235, pl. 9, fig. 7 designated herein; BM 23173; Pl. 11, Fig. 8 herein; Corallian (Oxfordian), Malton, Yorkshire.

Text fig. 204: Radulopecten inequicostatus - height/umbonal angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Nos. 2 and 7 are of that class of pectens which have a crooked appearance, leaning or bending to one side...

No. 7, similar in shape [to ' p.' Roseburiensis and ' p.' plagiostomus], is from the oolite. It has seven or eight ribs, of which those in the middle are vastly larger than those on either side. If it is not the p.flavicans, we might name it p. inequicostatus.

2. AMENDED DIAGNOSIS

Distinguished from all other species of Radulopecten by the inequality of the initial plicae.

3. AMENDED DESCRIPTION

Essentially very similar to R. vagans. Differing by the diagnostic feature (see Section 2); by the consistently early

Text fig. 205: Radulopecten inequicostutus - depth of byssal notch/length.

Text fig. 206: Radulopecten inequicostatus - height of anterior auricle/length.
development of plicae, relatively invariant number of initial plicae (5-9; text fig. 211) and rarity of intercalary plicae; by the consistently wide spacing of the plical lamellae on the left valve and lack of lamellae on the right valve, even in large specimens (PI. 11, Fig. 9); by the greater convexity, thicker shell (Pl. 11, Fig. 4) and more common attainment of a large size (see Section 7; $\mathrm{H}_{\text {max }}: 75$; MNP); by the ontogenetic decrease in H/L (text fig. 203) and by the marked ontogenetic increase in umbonal angle and larger mean H/UA (text fig. 204). Other metric proportions are plotted in text figs. 205-210.

Although the plicae are of unequal size in any individual the pattern of variation is relatively consistent between individuals, with the medial and antero-medial plicae usually the widest.

4. DISCUSSION

Most authors have applied Phillips (1829) name inaequicostatus to the species described in Section 3. However, Arkell (1935a) pointed out that Young and Bird (1822) de-
scribed and figured an undoubted example of the species described in Section 3 under 'pecten' inequicostatus and that this name should therefore be the senior synonym. Young and Bird's specimen is without doubt lost so a neotype (BM 23173; Pl. 11, Fig. 8) is herein designated.

A figured specimen assigned to ' P.' inaequicostatus PhilLIPS by LAhUSEN (1883) is derived from an unusually early horizon (Callovian; see Section 5) and has 12 plicae and abnormatly low values of HAA/L and N/L (1). It more probably belongs to Radulopecten scarburgensis. In view of the possibility of confusion for R. scarburgensis unfigured Callovian specimens either assigned to (Bean, 1839; Lycett, 1863; Semenow, 1896) or compared with (Krenkel, 1915; Read et al., 1925) Phillips's species can only be tentatively accepted as representatives of R. inequicostatus. Lycett's (1863) misuse of Phillips's specific name for a L. Callovian specimen of R. vagans is discussed under the latter species. Kiliav and Gutbhard's (1905) record of 'P.' ('Aequipecten') cf. inaequicostatus from the 'U. Kimmeridgian - L. Portlandian' can only be tentatively synonymised in view of the exceptionally late stratigraphic horizon and lack of a figure.

Text fig. 207: Radulopecten inequicostatus - intersinal distance on left valve/length.

Text fig. 208: Radulopecten inequicostatus - intersinal distance on right valve/length.

The figure of ' P.' biplex Buvignier (2) depicts a specimen which is in many respects similar to R. inequicostatus but which appears to possess the intercalary plicae more characteristic of R. vagans. Dechaseaux (1936), who may have had access to the specimen, has allied Buvignier's species with 'Aequipecten' inaequicostatus (Phillips). The latter author allied Étallon's species 'P.' semiplicatus with 'Ae.' vagans but the original description specifies its closeness to Roemer's (1836) species 'P.' octocostatus (emend. septemcostatus
1839), an undoubted synonym of R. inequicostatus. Kilian and Guébhard's (1905) unillustrated record of ' P.' ('Ae.') octocostatus from the Callovian can only be tentatively synonymised owing to the possibility of confusion for R. scarburgensis (see above).

The figures of 'P.' Neckeri de Loriol and 'P.' Ursannensts DE Loriol both depict specimens with 6 plicae and metric proportions of the former (3) are indistinguishable from R. inequicostatus. H/UA of the latter (4) is abnormally low

Text fig. 209: Radulopecten mequicostatus - anterior hinge length/length.

T'ext fig. 210: Radulopecten inequicostatus - posterior hinge length/length.
but this could be due to inaccurate drawing and is no basis for a specific separation.

The ornament of the remaining syntypes of ' P.' corallinus d'Orbigny (MNO 4290, 4290B) is indistinguishable from R. inequicostatus. The exceptionally high HAA/L and PH/L (5) of MNO 4290 is herein considered to represent extreme variation within R. inequicostatus.

The author has been unable to trace the original description of 'Chlamys' (R.) nagatakensis Kurata and Kimura. Tam. URA's (1959) use ol the name is For a specimen from Japan said to differ from 'Ch.' (R.) inaequicostata (Phillips) only by the presence of striae on the plicae. Since this is in fact a feature of well preserved examples of Phillips's species ($=R$. inequicostatus) Tamura's specimen may well be conspecific and Kurata and Kimura's species synonymous with R. inequicostatus.

Cox (1935a) compared a specimen from Somalia with PHILlups' species. The illustration leaves litule doubt that it is an example of R. inequicostatus.

The affinities of 'Pectinites' articulatus Schlothelm and subsequent references thereto are discussed under Ch . (Ch.) textoria. Should it turn out that Schlothein's type material is in fact representative of the species described in Section 3 an application to the ICZN for suppression of 'Pe.' articulatus might be considered in the interests of stable nomenclature.

5. STRATIGRAPHIC RANGE

Four specimens (GPIT; Pl. 11, Fig. 2) from the Great Oolite (Bathonian) constitute the earliest records of R. inequicostatus. Certain Callovian records are restricted to two rather poorly preserved specimens (YM 592f, BM L21817) from the U. Cornbrash of Yorkshire. Brighton (pers. comm. in Cox and Arkele, 1948:13) has shown that Lycett's (1863) figured specimen of ' P.' inaequicostatus Phillips, supposedly from the U. Cornbrash of Yorkshire, is in fact derived from the Oxfordian. Doubtfully conspecific specimens from the Callovian either referred to or compared with species which are synonymous with R. inequicostatus are discussed in Section 4.

Text fig. 211: Radulopecten inequicostatus - frequency distribution for number of plicae on left valve.

Two specimens from the 'Rauracien Inférieur' of the Swiss Jura (DF Loriol, 1894) constitute the only certain records from the L. Oxfordian but R. inequicostatus is locally abundant in the M. and U. Oxfordian (see Section 7).

Certain Kimmeridgian records are restricted to the eastern Jura (DE Loriol, 1881) and to the southern and eastern parts of the Paris Basin (MNP; Dechaseaux, 1936). R. inequicostatus is recorded from the Oxfordian/Kimmeridgian of Haute Marne (de Loriol et al., 1872), Charente Maritime (Coquand, 1860) and Poland (Sifmiradzki, 1893).

There are no certain records of R. inequicostatus after the Kimmeridgian. A Tithonian specimen referred to 'P.' ("Aequipecten') cf. inuequicostatus Phillips by Kilian and Guebhard (1905) is discussed in Section 4.

6. GEOGRAPHIC RANGE

Within Europe (text fig. 212) common accurrences of R. inequicostatus are strongly correlated with the development of coral reef facies (see Section 7). However, within such facies there appears to be a northward diminution in numbers, probably due to a temperature restriction. Compared with its abundance in reef facies in France and Switzerland R. mequicostatus is rare in reefal and peri-reefal sediments in Yorkshire. Only 12 museum specimens (YM 204, 559[2]; BM 23173, 23347, 23359, 23363, 47148[2]; SbM P141, P149; SM) are known and intensive field work by the author has brought to light only two more somewhat questionable examples.

Text fig. 212: Radulopecten inequicostatus - European distribution.

Text fig. 213: Radulopecten inequicostatus - World distribution (Callovian reconstruction).

To the south of Europe (text fig. 213) R. mequicostatus is known as far away as E. Africa (Cov, 1935a, 1965) and to the east it may extend to Japan (see Section 4).

7. DESCRtPTION OF ECOLOGY

R. inequicostatus is reported (Peron, 1905) to be the most abundant pectinid in the Oxfordian of the Yonne region and to be entirely restricted to the coral reef facies, where it reaches a maximum height of 75 mm (MNP). The associated fauna is described on p. 88. The species is likewise common (reaching a maximum height of 65 mm) in the Oxfordian coral reef facies in the Swiss Jura (df Loriol, 1893) and the coral-rich U. Oxfordian sediments of Meurthe and Moselle have also yielded numerous specimens ($\mathrm{NM} ; \mathrm{H}_{\text {max }}$: 54). R. inequicostatus is not known to be common elsewhere in the Oxfordian but with the exception of solitary specimens cited by de Loriol (1895) and Cox (1935a) all records (text figs. 212,213) are associated with corals, or coral-dwelling, or facultatively coral-dwelling pectinids (see p. 88). Most, if not all, of the Kimmeridgian and Oxfordian/Kimmeridgian records (see Section 5) are similarly associated.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that for at least part of its life history R. inequicostatus was heavily reliant on corals in some way. The absence of the species from apparently suitable cor-al-rich sediments in the L. Kimmeridgian of Montbeliard (Contejean, 1859) is at present inexplicable.

There is no evidence of competition with Cblamys (Ch.) textoria, a species which in reefs probably occupied the same microhabitats as at least juveniles of R. inequicostatus (see Section 9).

9. FUNCTIONAL MORPHOLOGY

Like the Spondylopecten species with which it usually occurs, R. inequicostatus has a thick and relatively convex shell,
thus the 'wedged' mode of life suggested for the former group might be inferred for the latter species. However, the lack of plical lamellae on the right valve argues against such a conclusion and suggests a more conventional mode of life with only the right valve ever in contact with the substrate. The presence of a byssal notch indicates that the species was byssate, at least when young, and the association with corals implies that the latter provided the attachment surface. Adults may have been forced to recline by virtue of their large size and thick shells.

The irregular ornament, high convexity and thick shell of R. mequicostatus would have greatly hindered swimming and in spite of ontogenetic increase in the umbonal angle it seems likely that adult animals were essentially sessile. The high convexity and thick shell probably facilitated a 'siege' policy against predators.

10. ORIGINS AND EVOLUTION

R. inequicostatus undoubtedly evolved from R. vagans. Evolution of a form with a relatively invariant number of initial plicae, consistently developed early in ontogeny, and with consistently widely spaced plical lamellae and rare intercalary plicae, is apparently a case of 'genetic assimilation' (WAD. DINGTON, 1957) and as such implies regulatory change. Other morphological changes (see Section 3) may imply evolution of the structural genome.

There are apparently no phyletic changes in R. inequicostattis. Maximum height in the Kimmeridgian (41 mm ; MNP) is considerably less than in the Oxfordian (75 mm) but this is probably a reflection of the restricted sample (see Section 5) rather than an evolutionary reduction in size.

The paucity of Callovian records of R. inequicostatus is probably due to the scarcity of coralliferous facies in Europe at this time. However, there is no scarcity of coralliferous facies to account for the apparent extinction of the species in the Tithonian. A deterministic explanation for the demise of R. inequicostatus is as yet unavailable.

B IBLIOGRAPHY

Abel, O. (1897): Die Tithonschichten von Niederfellabrunn in Niederösterreich und deren Beziehungen zur unteren Wolgastufe. - Verh. K. K. geol. Reichsanst., Wien, Year 1897: 343-362; Wien.
Ager, D. V., Donovan, D. l., Kennedy, W. J., McKerrow, W. S., Mudge, D. C. \& Seliwood, B. W. (1973): The Cotswold Hills. - Geologist's Association Guide, Nr. 36: 34 pp; Colchester (Benham).
Alencasta de Cserna, G. \& Estela Buitron, B. (1965): Estratigrafia y Paleontologia del Jurasico superior de la parte centromeridional del Estado de Puebla. Parte II. Fauna del Jurasico superior de la region de Petlalcingo, Estado de Puebla. Paleont. mex., Nr. 21: 53 pp; México.
Allasinaz, A. (1972): Revisione dei Pettinidi triassici. - Riv. ital. Paleont. Stratigr., 78: 189-428; Milano.
Allen, H. A. (1905): Catalogue of types and figured specimens of British Lamellibranchiata from the Rhaetic Beds and Lias, preserved in the Museum of Practical Geology, London. Mem. geol. Surv. Summ. Progr., Year 1904: 172-178; London.
ALLEN, J. A. (1953): Observations on the epifauna of the deep water muds of the Clyde Sea area, with special reference to Chlamys septemradiata. - J. Anim. Ecol., 22: 240-260; Oxford.
Aith, A. (1882): Die Versteinerungen des Nizniower Kalksteines. Beitr. Paläont. Geol. Ost.-Ung., 1: 183-332; Wien.
Anderson, F. W. \& Bazley, R. A. B. (1971): The Purbeck Beds of the Weald (England). - Bull. geol. Surv. Gt. Br., Nr. 34: 1-138; London.
Andler (1858): Uber die Angulaten-Schichten in der Würtembergischen Jura-Formation. - Neues Jb. Miner. Geol., Y'ear 1858: 641-645; Stuttgart.
Arkell, W. J. (1926): Studies in the Corallian Lamellibranch Fauna of Oxford, Berks., and Wilts. II. Pectinidae.-Geol. Mag., 43: 534-555; London.

- - (1928): Aspects of the ecology of certain fossil coral reefs. - J. Ecol., 16: 134-139; London.
- - (1929a-37a): A monograph of British Corallian Lamellibranchs. - Palaeontogr. Soc. [Monogr.], (1), 1929: 1-72; (2), 1930: 73-104; (3), 1931: 105-132; (4), 1932: 133-180; (5), 1933: 181-228; (6), 1934: 229-276; (7), 1934: 277-324; (8), 1935: 325-350, I-XV1; (9), 1936: 351-376, xvii-xxii; (10), 1937: 377-392, xxiii-xxxviii; London.
- (1931b): Berechtigungen der Identität gewisser jurassischer Pecten-Arten. - Zentbl. Min., Year 1931 (B): 430-443; Stuttgart.
- (1936b): The Corallian beds of Dorset. Part I. The Coast. Proc. Dorset nat. Hist. archaeol. Soc., 57: 59-93; Dorchester.
- - (1956): Jurassic Geology of the World. - 757pp, Edinburgh (Oliver \& Boyd).
Barbulescu, A. (1961): Contributii la studiul Jurasicului din Valea Tichilestilor (R. Hirsova). - Studii Cerc. Geol, 6: 699-708; Bucuresti.
- - (1971): Les facies du Jurassique dans la partie ouest de la Dobrogea centrale (Roumanie). - Ann. Inst. Geol. Publ. Hungar, 54: 225-232; Budapest.
Bayle, E. (1878). Explication de la carte Geologique de la France, Atlas- Première Partie. Fossiles principaux des terrains. - 4: 158 plates; Paris (Impr. Nationale).
BEAN, W. (1839): A catalogue of the fossils found in the Cornbrash limestone of Scarborough with Figures and Descriptions of some of the undescribed Species. - Mag. nat. hist. (N. S.), 3: 57-62; London.
Behmel, H. (1970): Beiträge zur Stratigraphie und Paläontologie des Juras von Ostspanien. V. Stratigraphie und Fazies im präbetischen Jura von Albacete und Nord Murcia. - Neues Jb. Geol. Paläont. Abh., 137: 1-102; Stuttgart.
Behmel, H. and Geyer, O. F. (1966): Beiträge zur Stratigraphie und Paläontologie des Juras von Ostspanien. 111. Stratigraphie und Fossilführung im Unterjura von Albarracin (Provinz Teruel). - Neues Jb. Geol. Paläont. Abh., 124: 1-52; Stuttgart.

Behrendsen, O. (1891): Zur Geologie des Ostabhanges der argentinischen Cordillere. 1 Theil.-Zeit. dt. geol. Ges., 43 : 369-402; Berlin.
Benecke, E. W. (1898): Beitrag zur Kenntnis der Jura in DeutschLothringen. Abh. geol. Spez.-Karte. Els.-Loth. (N. S.), 1: 1-97; Seraßburg.
Berridge, N. G. \& Ivimey-Cook, H. (1967): The geology of a Geological Survey borehole at Lossiemouth, Morayshire. - Bull. geol. Surv. Gt. Br., Nr. 27: 155-169; London.
Bettoni, A. (1900): Fossili Domeriani della provincia di Brescia. Abh. schweiz. paläont. Ges., 27: 1-88; Zürich.
BEU, A. G. (1966): Ecological variation of Chlamys dieffenbachi (Reeve) (Mollusca, Lamellibranchia). - Trans. R. Soc. N. Z. (Zool.), 7: 93-96; Dunedin.
Bistram, A. F. (1903): Beiträge zur Kennenis des unteren Lias in der Val Solda. - 99 pp; Freiburg (Dissertation).
Blake, J. F. (1875): On the Kimmeridge Clay of England. - Q. Jl. geol. Soc. Lond., 31: 196-237; London.
Bianchet, F. (1923): La faune du Tithonique inférieur des regions subalpines et ses rapports avec celle du Jura franconien. Bull. Soc. géol. Fr. (4), 23: 70-80; Paris.
Biaschke, F. (1911): Zur Tithonfauna von Stramberg in Mähren. Annln. naturh. Mus. Wien, 25: 143-222; Wien.
BLOOM, S. A. (1975): The motile escape response of a sessile prey. A sponge-scallop mutualism. - J. exp. mar. Biol. Ecol., 17: 311-321; Amsterdam.
Biuthgen, J. (1936): Die Fauna und Stratigraphie des Oberjura und der Unterkreide von König Karl Land. - 91 pp ; Grimmen in Pommern (Grimmer hreis-Zeitung).
Boden, K. (1911): Die Fauna des Unteren Oxford von Popilany in Lithauen. - Geol. paläont. Abh. (N. S.), 10: 125-199; Jena.
Boemm, G. (1881a): Die Fauna des Kelheimer Diceras-Kalkes: Zweite Abteilung - Bivalven. - Palacontographica, 28: 141-192; Stuttgart.

- - (1881b): Die Bivalven der Schichten des Diceras Munsteri (Diceraskalk) von Kelheim. - Z. dt. geol. Ges., 33: 67-74; Berlin.
- (1883): Die Bivalven der Stramberger Schichten. - Palaeontographica, Supp. II: 493-680; Cassel.
BOHM, J. (1901): Uber die Fauna der Pereiros-Schichten. - Z. dt. geol. Ges., 53: 211-252; Berlin.
Bonarelli, G. (1895): Fossili Domeriani della Brianza. - Rc. 1st. lomb. Sci. Lett. (2), 28: 326-341; Milano.
Borissiak, A. \& Ivanoff, E. (1917): Les Pélécypodes des couches jurassiques de la Russie d’Europe. V. Pectinidae. - Trūdy geol. Kom., Nr. 143: 1-58; S. Peterburg.
Bоtto-Micca, L. (1893): Fossili degli strati a Lioceras opalinum Rein. e Ludwigia murchisonae Sow. della Croce di Valpore (M. Grapa), Provincia di Treviso. - Boll. Soc. geol. ital., 12: 143-193; Roma.
Boule, M. (1906-32): Types du Prodrome de paléontologie stratigraphique universelle de AlCIDE D'Orbigni. - Annls. Paleont., 1906, 1: 79-100, 165-172, 193-196; 1907, 2: 89-96, 161-172; 1908, 3: 25-40, 189-200; 1909, 4: 109-124, 153-164; 1910, $5: 65-88$; 1911, 6: 65-92; 1912, 7: 73-104; 1923, 12 : $149-176$; 1925, 14: 133-164; 1927, 16: 103-132; 1928, 17 : 49-80; 1929, 18: 141-176; 1931, 20:1-40, 165-184; 1932, 21 : 1-30; Paris.
Bradshaw, M. J. (1978): A facies analysis of the Bathonian of Eastern England. - Unpubl. M. S. D. Phil., Univ. Oxford: 467 pp.
Branco, W. (1879): Der untere Dogger Deutsch-Lothringens. Abh. geol. Spez.-Karte. Els.-Loth., 2: 1-155; Straßburg.
Brasil, L. (1895): Observations sur le Bajocien de Normandie. Bull. Lab. Geol. Fac. Sci. Caen, Year 1895: 1-21; Caen.
Brauns, D. (1871): Der untere Jura im nordwestlichen Deutschland von der Grenze der Trias bis zu den Amaltheenthonen mit besonderer Berücksichrigung seiner Molluskfauna. - 493 pp; Braunschweig (Vieweg).
- - (1874): Der obere Jura im nordwestlichen Deutschland. $43+$ pp; Braunschweig (Vieweg).
Bronn, H. G. (1852): Lethaea geognostica (2). - 412 pp; Stuttgart. Broonfield, M. (1973): Palaeogeography of the Upper Oxfordian and Lower Kimmeridgian (Jurassic) in Brıtain. - Palaeogeogr. Palaeoclimatol. Palaeoecol., 14:137-167; Amsterdam.
- - (1978): The litostratigraphy of the upper Oxfordian and lower Kimmeridgian beds of South Dorset. - Proc. Geol. Ass., 89: 1-32; Edinburgh.
Brown, T. (1837-49): 1llustrations of the Fossil Conchology of Great Britain and Ireland. - 273 pp; London (Smith, Elder).
Brun, E. (1972): Food and feeding habits of Luidia ciliaris (Echinodermata: Asteroidea). - J. Mar. Biol. Ass. U. K., 52: 225-236; Plymouth.
Buch, C. L. von (1839): Uber den Jura in Deutschland. - Abh. dt. Akad. Wiss. Berl., Year 1837: 49-135; Berlin.
Burckhardt, C. (1903): Beiträge zur Kennenis der Jura- und Kreideformation der Cordillere (1). - Palaeontographica, 50: 1-72; Stuttgart.
Burnett, A. L. (1960): The mechanism employed by the starfish Asterias forbesi to gain access to the interior of the bivalve Vernus mercenaria. - Ecology, 41:583-4; Durham, N. C.
BUVIGNIER, A. (1852): Statistique géologique, mineralogique, minéralurgique et paléontologique du département de la Meuse. Atlas. -52 pp ; Paris (Baillière).
Capellini, G. (1866): Fossili infraliassici dei dintorni del golfo della Spezia. - Atti Accad. Sci. Ist. Bologna, 5: 413-486; Bologna.
CARTER, R. M. (1968): On the biology and palaeontology of some predators of bivalved molluscs. - Palaeogeogr. Palaeoclimatol. Palaececol., 4: 29-65; Amsterdam.
- - (1972): Adaptations of British Chalk Bivalvia. - J. Paleont., 43: 325-340; Lawrence, Kansas.
Channon, P. J. (1950): New and enlarged Jurassic sections in the Cotswolds. - Proc. Geol. Ass., 61: 242-260; London.
Chapuis, M. F. \& Dewalque, M. G. (1853): Description des fossiles des terrains secondaires de la province de Luxembourg. Mem. Acad. r. Belge, 33: 303 pp; Bruxelles.
Chavan, A. (1952): Les Pélécypodes des sables astartien de Cordebugle (Calvados). - Schweiz. paläont. Abh., 69: 132 pp; Zürich.
Choubert, G. (1938): Sur le Dogger du Haut - Atlas oriental. - C. r. hebd. Séanc. Acad. Sci., Paris, 206: 197-199; Paris.
CIARK, G. R. II. (1971): The influence of water temperature on the morphology of Leptopecten latiauritus. - Veliger, 13: 269-272; Berkeley.
- - (1974): Calcification on an unstable substrate: Marginal growth in the mollusc Pecten dregensis. - Science, N. Y., 183: 968-970; Washington.
Cock, A. G. (1966): Genetical aspects of metrical growth and form in animals. - Q. Rev. Biol., 4]: 131-190; Baltimore.
Contejean, C. H. (1859): Étude de l'étage Kimméridien dans les environs de Montbéliard et dans le Jura, la France et l'Angleterre. - Mem. Soc. Émul. Doubs., Year 1858: 352 pp; Besançon.
COQUAUD, H. (1860): Description physique, géologique, paléontologique et minéralogique du département de la Charente (2). 420 pp ; Marseille (Barlatier).
Cossmann, M. (1900): Seconde note sur les mollusques du Bathonien de St. - Gaultier (Indre). - Bull. Soc. géol. Fr (3), 28: 165-203; Paris.
- (1904): Note sur l'infralias de la Vendée et des Deux-Sèvres (suite). - Bull. Soc. géol. Fr. (4), 3: 497-545; Paris.
- (1906): Quelques pélécypodes jurassiques de France. - C. r. Ass. fr. Avanc. Sci., Y'ear 1906 (Lyons Congress): 11 pp; Paris.
- - (1907a): Troisième note sur le Bathonien de Saint-Gaultier (Indre). - Bull. Soc. geol. Fr. (4), 10: 225-253; Paris.
- (1907 b): Description de quelques pélécypodes jurassiques recueillis en France. - C. r. Ass. Fr. Avanc. Sci., Year 1907 (Rheims Congress): 14 pp; Paris.
- - (1907c): Paléontologie: pp. 10-70-1n: Thiery, P. \& Cossmann, M.: Note sur le Callovien de la Haute Marne et spécialement sur un gisement situé dans la commune de Bricon. Bull. Soc. Agric. Lett. Sci. Artes Haute Saône, Year 1907 (2): 79 pp ; Vesoul.
- (1910): Description de quelques espèces de l'oolithe bajocienne de Nuars (Nievre). - Bull. Soc. Sci. hist. nat. Yonne, Year 1909: 1-13; Auxerre.
- (1911): Quelques pélécypodes jurassiques recueillis en France. - C. r. Ass. fr. Avanc. Sci., Year 1911 (Dijon Congress): 10 pp ; Paris.
- - (1912): Quelques pélécypodes jurassiques recueillis en France. - C. r. Ass. fr. Avanc. Sci., Year 1912 (Nîmes Congress): 11 pp; Paris.
- (1914): Description de quelques pélécypodes jurassiques recueillis en France. - C. r. Ass. fr. Av. Sci, Year 1914 (Le Havre Congress): 48 pp; Paris.
- (1916): Étude complémentaire sur le Charmouthien de la Vendée. - Bull. Soc. geol. Normandie, 33: 23-69; Le Havre.
- (1919): Bajocien-Bathonien dans le Nièvre. - Bull. Soc. géol. Fr. (4), 18: 337-459; Paris.
- - (1921): Description de pélécypodes jurrassiques recueillis en France. - C. r. Ass. fr. Avanc. Sci., Year 1920 (Strasbourg Congress): 29 pp; Paris.
- - (1922): Description de péécypodes jurassiques recueillis en France. - C. r. Ass. fr. Avanc. Sci., Year 1922 (Montpellier Congress): 21 pp; Paris.
- (1925): Sur quelques pélécypodes du Jurassique francaise. Bull. Soc. géol. Fr. (4), 24: 654-671; Paris.
Cotteau, G. (1853-57): Études sur les mollusques fossiles du département de le Yonne. Pt. 1 - (1), 1852: i-xliii; (2), 1853: 1-17; (3), 1854: 18-47; (4), 1855:48-124; (5), 1857: 125-144; Paris (Baillière).
Cox, L. R. (1926): Notes on the Lamellibranchia of the Black Marl of Black Ven and Stonebarrow' - Q. Jl. geol. Soc. Lond., 82: 180-1 84; London.
- (1928): The Gastropod and Lamellibranch Molluscs from the Belemnite Marls. - Q. Jl. geol. Soc. Lond., 84: 233-245; London.
- (1935a): Jurassic Gastropoda and Lamellibranchia: pp. 148-197.-1n: MACFADYEN, W. A. (ed.): The Geology of British Somaliland. II. The Mesozoic Palaeontology of British Somaliland; London.
- (1935b): The Triassic, Jurassic, and Cretaceous Gastropoda and Lamellibranchia of the Attock District. - Mem. geol. Surv. India Palaeont. indica (N. S.), 20 (Mem. 5): 27 pp ; Calcutta.
- (1936): Fossil Mollusca from southern Persia (Iran) and Bahrein island. - Mem. geol. Surv. India Palaeont. indica (N. S.), 22 (Mem. 2): 69 pp; Calcutta.
- (1942): Notes on Jurassic Lamellibranchs. V111. On the genus Velata Quenstedt. - Proc. malac. Soc. Lond., 25: 119-124; London.
- (1952): The Jurassic Lamellibranch fauna of Cutch. (Kachh). Nr. 3. Families Pectinidae, Amusiidae, Plicatulidae, Limidae, Ostreidae and Trigoniidae (supplement). - Mem. geol. surv. India Palaeont. indica (9), 3 (Mem. 4): 128 pp; Calcutta.
- - (1965): Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya, - Bull. Br. Mus. nat. Hist. (Geol.), Supp. 1: 213 pp; London.
COX, L. R. \& Arkell, W. J. (1948-50): A survey of the Mollusca of the British Great Oolite Series. - Palaeontogr. Soc. [Monogr.], (1) 1948:1-48; (2), 1950: 49-105; London.
Cragin, F. W. (1905): Paleontology of the Malone Jurassic Formation of Texas. - Bull. U. S. geol. Surv., 266: 109 pp; Washington.
Cross, J. E. (1875): The Geology of North-West Lincolnshire. - Q. J1. geol. Soc. London, 31: 115-130; London.
Dahm, H. (1965): Stratigraphic und Paläogeographie im Kantabrischen Jura (Spanien). - Beih. geol. Jb., 44: 13-54; Hannover.
Dat Piaz, G. (1912): Sulla fauna Batoniana del Monte Pastello nel Veronese. - Memorie 1nst. geol. miner. Univ. Padova, 1: 215-266; Padova.
Damborenea, S. E. \& Mancenido, M. O. (1979): On the palaeogeographical distribution of the pectinid genus Weyla. Palaeogeogr. Palaeoclimatol. Palacoecol., 27: 85-102; Amsterdam.
Damon, R. (1860): A supplement to the Handbook to the Geology of Weymouth and the Island of Portland. - 9 Plates, London (Stanford).
- (1880): A supplement to the Geology of Weymouth and the Isle of Portland. - 18 Plates, London (Stanford).
Dareste de la Chavanne, J. (1920): Fossiles Liasiques de la région de Guelma. - Matér. Carte géol. Algér. (1), Nr. 5: 72 pp; Alger.
Dean, W. T. (1954): Notes on part of the Upper Lias succession at Blea Wyke, Yorkshire. - Proc. Yorks. geol. polytech. Soc., 29: 16-179; Hull.
Dechaseaux, C. (1936): Pectinidés jurassiques de l'est du Bassin de Paris. - Annls. Paléont., 25: 1-148; Paris.
Defrance, M. J. L. (IS25a): [Description of Pecten Incrustatus sp. nov.]: p. 253 - In: Blainville, H. DE: Dictionnaire des Sciences Naturelles par plusieurs professeurs du jardin du roi. - 38; Strasbourg (Levrault).
- (1825b): Mémoire géologique sur les terrains de la Normandie de M. de Caumont. Mem. Soc. linn. Normandie, 2: p. 507; Caen.
De Gregorio, A. (1884): Nota intorno ad alcune nuove conchiglia mioceniche de Sicilian. - Naturalista sicil., 3: 119-120; Palermo.
- (1886a): Nota intorno a taluni fossili di Monte Erice di Sicilia. - Memorie Accad. Sci. Torino (2), 37: 665-676; Torino.
- - (1886b): Monographie des fossiles de Ghelpa du sous-horizon Ghelpin De Greg. - Annls. Géol. Paléont., Nr. 1:27 pp; Palermo.
- (1886c): Monographie des fossiles de Valpore (Mont Grappa) du sous-horizon Grappin De Greg. - Annls. Gèol. Paléont., Nr. 2: 20 pp; Palermo.
- - (1886d): Monographie des fossiles de S. Vigilio du sous-horizon Grappin De Greg. - Annls. Géol. Paléont., Nr. 5: 28 pp ; Palermo.
- (1922): Monografia dei fossili titonici di Casale di sopra (Busambra). - Annls. Géol. Paléont., Nr. 36: 28 pp; Palermo.
De La Beche, H. T. (1832): Handbuch der Geognosie. -612 pp; Berlin (Duncker, Humblot).
Deninger, K. (1907): Die mesozoischen Formationen auf Sardinien. - Neues Jb. Miner. Geol. Paläont. Beilbd., 23: 435-473; Stuttgart.
Deshayes, G. P. (1831): Description des coquilles caractéristiques des terrains. - 264 pp, Paris (Levrault).
DHONDT, A. V. (1971): Systematic revision of Entolutm, Propeamussium (Amussiidae) and Syncyclonema (Pectinidae, Bivalvia, Mollusca) of the European Boreal Cretaceous. - Bull. Inst. r. Sci. nat. Belg., 47, Nr. 32: 92 pp; Bruxelles.
Dietl, G. (1977): The Aalenian at the type locality. - Stuttg. Beitr. Naturk. (B), Nr. 30: 12 pp ; Stuttgart.
Dietrich, W. O. (1933): Zur Stratigraphie und Paläontologie der Tendaguruschichten. - Palaeontographica, 72: 1-86; Stuttgart.
Di Stefano, G. (1886): Sul Lias inferiore di Taormina e de'suoi dintorni. - G. Sci, nat. econ. Palermo, 18: 135 pp; Palermo.
- (1891): A proposito di due Pettini dei calcari nero-lionata di Taormina. - Naturalista Sicil., 11:61-64; Palermo.
Dollfus, A. (1863): La Faune Kimméridienne du Cap de l'Hève. 102 pp, Paris.
Donovan, D. T. (1953): The Jurassic and Cretaceous stratigraphy and palaeontology of Traill \varnothing, East Greenland. - Meddr. Grønland, 111, Nr. 4:150pp; Kjøbenhavn.
Douglas, J. A. \& Arkiell, W. J. (1928): The stratigraphical distribution of the Cornbrash. I. The southwestern area. - Q. JI. geol. Soc. Lond., 84: 117-178; London.
- (1932): The stratigraphical distribution of the Cornbrash. II. The northeastern area. - Q. J. geol. Soc. Lond., 88: 112-170; London.
Douvillé, H. (1886): Examen des fossiles rapportés du Choa par M. Aubry. - Bull. Soc. géol. Fr. (3), 14: 223-241; Paris.
- (1916): Les terrains secondaires dans le massif du Moghara: Paléontologie. Première partie. Terrains Triassiques et Jurassiques. - Mem. Acad. Sci. Inst. Fr., 54; 1-84; Paris.
Douvillé, H. \& Cossmann, M. (1925): Le Callovien du massif du Moghara. - Bull. Soc. géol. Fr. (4), 25: 303-328; Paris.
Dubar, G. (1925): Études sur le Lias des Pyrénées francaises. - Mem. Soc. geol. N., 9, Nr. 1: 332 pp; Paris.
- (1948): La Faune Domérienne du Jebel Bou-Dahar. - Notes Mem. Serv. Mines Carte géol. Maroc. Nr. 68: 248 pp; Rabat.

DUFF, K. L. (1975): Palaeoecology of a bitumnnous shale - the Lower Oxford Clay of Central England. - Palacontology, 18: 443-482; London.

- - (1978): Bivalvia from the English Lower Oxford Clay (Middle Jurassic). - Palaeontogr. Soc. [Monogr.]: 137 pp; London.
Dumortier, E. (1864-74): Etudes paléontologiques sur les dépots jurassiques du Bassin du Rhone. - 1, 1864; 187 pp; 2, 1867: $252 \mathrm{pp} ; 3,1869: 348 \mathrm{pp} ; 4,1874: 335 \mathrm{pp}$; Paris.
Emerson, B. K. (1870): Die Liasmulde von Markoldendorf beí Einbeck. - Z. dt. geol. Ges., 22: 271-334; Berlin.
ERNST, W. (1923): Beiträge zur Paläontologie und Stratigraphie des nordwestdeutschen Jura. IV. Zur Stratigraphie und Fauna des Lias Gim nordwestlichen Deutschland (Erster Teil). - Palae- $^{\text {im }}$ ontographica, 65: 1-96; Stuttgart.
Étalion, A. (1863): Étude paléontologique sur le Jura graylois. Mem. Soc. Émul. Doubs, 8: 221-506; Besançon.
Faure-Marguerit, G. (1920): Monographie paléontologique des assises coralligenes du promontoire de l’Échaillon (Isère). Trav. Lab. Géol. Univ. Grenoble, 12: 9-108; Grenoble.
Favre, E. (1876): Description des fossiles du terrain Oxfordien des Alpes Fribourgeoises. - Abh. schweiz. paläont. Ges., 3: 1-75; Genève.
Feder, H. M. (1970): Growth and predation by the ochre sea-star Pisaster ochraceus (Brandt) in Monterey Bay, California. Ophelia, 8: 161-185; Helsingoer.
Feder, H. M. \& Christensen, A. M. (1966): Aspects of Asteroid Biology: pp. 87-128-1n: Boolootian, R. A. (ed.): Physiology of Echinoderms; New York (Interscience).
Fiebelkorn, M. (1893): Die norddeutschen Geschiebe der oberen Juraformation. - Z. dt. geol. Ges., 45: 378-450; Berlin.
Fischer, J.-C. (1964): Contribution à l'étude de la faune bathonienne dans la vallée de la Creuse (Indre): Brachiopodes et Molluscques. - Annls. Paléont. (Invert.), 50: 19-101; Paris.
Fischir, P. (1880-87): Manuel de Conchyliologie et de Paléontologie Conchyliologique. -1369 pp ; Paris (Savy).
Fischer de Waldheim, G. (1843): Revue des fossiles du gouvernement de Moscou. - Byull. mosk. Obschch. Ispȳt. Prir., 16: 100-140; Moscou.
Frebold, H. (1957): The Jurassic Fernie Group in the Canadian Rocky Mountains and foothills. - Mem. geol. Surv. Brch. Can., Nr. 287: 197 pp; Ottawa.
Frentzen, K. (1932): Paläobiologisches über die Korallenvorkommen im oberen weißen Jura bei Nattheim, O. A. Heidenheim. - Bad. geol. Abh., 4: 43-47; Karlsruhe.

Fucini, A. (1906): Fauna della zona a Pentacrinus tuberculatus Mill. di Gerfalco in Toscana. - Boll. Soc. geol. Ital., 25: 613-654; Roma.

- - (1920): Fossili domeriani dei dintorni di Taormina. - Palacontogr. Ital., 26: 75-116; Pisa.
FUrsich, F. T. (1971): Hartgründe und Kondensation im Dogger von Calvados. - Neues Jb. Geol. Paläont. Abh., 138: 313-342; Stuttgart.
- - (1976): The use of macro-invertebrate associations in interpreting Corallian (U. Jurassic) environments. - Palaeogeogr. Palaeoclimatol. Palaeoecol., 20: 236-256; Amsterdam.
- - (1977): Corallian (Upper Jurassic) marine benthic associations from England and Normandy. - Palaeontology, 20: 337-385; London.
Fursich, F. T. \& Hurst, J. M. (1974): Environmental factors determining the distribution of brachiopods. - Palacontology, 17: 879-900; London.
Futterer, K. (1894): Beiträge zur Kenntnis des Jura in Ost-Afrika. Z. dt. geol. Ges., 46: 1-49; Berlin.

Gemmellaro, G. G. (1874): Sopra i fossili della zona con Terebratula aspasia Meneghini della provincia di Palermo e di Trapani, - G. Sci. nat. econ. Palermo, 10: 73-132; Palermo.

- (1875): Sulla fauna del calcare a Terebratula janitor del nord di Sicilia. - G. Sci. nat. econ. Palermo, 9: 15-77; Palermo.
- (1878): Sui fossili del calcare cristallino delle Montagne del Casale e di Bellampo nella provincia di Palermo. - G. Sci. nat. econ. Palermo, 13: 233-424; Palermo.
- (1886): Sugli strati con Leptaena nel Lias superiori della Sicilia. - Boll. R. Com. geol. Ital., 17: 341-356; Roma.
Gemmellaro, G. G. \& Di Blasi, A. (1874): Pettini de titonio inferiore. - Atti. Accad. gioenia Sci. Nat., 9: 95-138; Catania.

Geyer, O. F. (1954): Die oberرurassische Korallenfauna von Württemberg. - Palaeontographica (A), 104: 121-200; Stuttgart.
Gili, G. A. \& Coates, A. G. (1977): Mobility, growth patterns and substrate in some fossil and recent corals. - Lethaia, 10: 119-134; Oslo.
Goldfuss, G. A. (1883-40): Petrefacta Germaniae. - 2 (1), 1833: 1-68; (2), 1836: 69-140; (3), 1837: 141-224; (4), 1840: 225-312; Dusseldorf (Arnz).
Gottsche, C. (1878): Über jurassische Versteinerungen aus der argentinischen Cordillere. - Palaeontographica, Supp. 3: 50 pp ; Cassel.
Gould, S. J. (1971): Muscular mechanics and the ontogeny of swimming in scallops. - Palaeontology, 14:61-94; London.

- (1977): Ontogeny and Phylogeny - 501 pg ; Cambridge, Mass (Belknap).
Gould, S. J. \& Eldredge, N. (1977): Punctuated equilibria: the tempo and mode of evolution reconsidered. - Paleobiology, 3: 115-151: Lancaster, PA.
Greco, B. (1898): Fauna della zona con Lioceras Opalinum Rein. sp. di Rossano in Calabria. - Palaeontogr. ital., 4: 93-139; Pisa.
Greppin, E. (1898): Description des fossiles de la grande oolithe des environs de Bàle. - Abh. schweiz. paläont. Ges., 25: 1-52; Genève.
Gutseli, J. S. (1931): The natural history of the bay scallop. - Bull. Bur. Fish., W'ash., 46: 569-632: Washington.
Hallam, A. (1963): Observations on the palaeoecology and ammonite sequence of the Frodingham Ironstone (Lower Jurassic). Palacontology, 6: 554-574; London.
- (1965): Environmental causes of stunting in living and fossil marine benthonic invertebrates. - Palaeontology, 8: 132-155; London.
- (1971): Facies analysis of the Lias in West Central Portugal. Neues Jb. Geol. Paläont. Abh., 139: 226-265; Stuttgart.
- - (1972): Diversity and density characteristics of Pliens-bachian-Toarcian molluscan and brachiopod faunas of the North Atlantic. - Lethaia, 5: 389-412; Oslo.
- - (1975a): Jurassic Environments. - 269 pp; Cambridge, U. K. (Univ. Press).
- (1975b): Coral patch reefs in the Bajocian of Lorraine. - Geol. Mag., 112: 383-392; London.
- - (1976): Stratigraphic distribution and ecology of European Jurassic bivalves. - Lethaia, 9: 245-259; Oslo.
- - (1977): Jurassic bivalve biogeography. - Paleobiology, 3: 58-73; Lancaster, PA.
HaUff, B. (1921): Untersuchung der Fossilfundstätten von Holzmaden im Posidonienschiefer der oberen Lias Württembergs. - Palaeontographica, 64: 1-42; Stuttgart.
- (1953): Das Holzmadenbuch. - 54 pp; Ohringen (Rau).

Hayani, I. (1975): Liassic Chlamys, 'Camptonectes' and other pectinids from the Kuruma group in Central Japan. - Trans. Proc. palaeont. Soc. Japan (N. S.), Nr. 28: 119-127; 'Tokyo.

- - (1959): Pelecypods of the Mizunuma Jurassic in Miyagi Prefecture, with some stratigraphical remarks. - Trans. Proc. palaeont. Soc. Japan (N. S.), Nr. 34: 66-67; Tokyo.
- (1961): On the Jurassic pelecypod faunas in Japan. - J. Fac. Sci. Tokyo Univ. (Sect. 2), 13: 243-343; Tokyo.
- - (1972): Lower Jurassic Bivalvia from the environs of Saigon: pp. 179-230 - In: Kobayashi, T. \& Toriyama, R. (eds.): Geology and Palaeontology of Southeast Asia (10); Tokyo (Univ. Press).
Hennig, E (1924): Der mittlere Jura im Hinterlande von Daressalaam (Deutsch-Ostafrika). - Monogn. Geol. Paläont. (2), Nr. 2: 131 pp; Berlin.
Herrmannsen, A. (1846-47): Indicis generum malacozoorum primordia. - 1: 637 pp; Cassel (T. Fischer).
Hertlein, L. G. (1969): Families Entoliidae and Pectinidae: N348-373, - ln: MOORE, R. C. (ed.): Treatise on Invertebrate Palaeontology. N:1, Mollusca: Bivalvia; Kansas (Univ. Printing Service).
Hewitt, R. A. \& Hurst, J. M. (1977): Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance. - Lethaia, 10: 287-301; Oslo.

Hillebrandt, A. von (1973): Die Ammonitengattungen Bouletceras und Frechiella im Jura von Chile und Argentinien. - Ecolg. geol. Hely., 66: 351-363; Lausanne.
Holder, H. (1964): Jura. - Handb. stratigr. Geol., 4: 603 pp; Stuttgart (Enke).
— - (1978): Ưber die Pectiniden-Gatung Parvamussium im Jura. - Stuttg. Beitr. Naturk., Nr. 38: 37 pp; Stuttgart.

Holder, H. \& Ziegler, B. (1959): Stratigraphische und faunistische Bezichung im Weißen Jura (Kimmeridien) zwischen Süddeutschland und Ardèche. - Neues Jb. Geol. Paläont. Abh., 108: 150-214; Stuttgart.
Hornell, J. (1909): Report upon the anatomy of Placina placenta with notes upon its distribution and economic uses. - Rpt. mar. Zool. Okhamandal, 1: 43-97; London.
Huckriede, R. (1967): Molluskenfaunen mit limnischen und brackischen Elementen aus Jura, Serpulit und Wealden NWDeutschlands und ihre paläogeographische Bedeutung. Beih. geal. Jb., 67: 263 pp; Hannover.
Hudson, J. D. \& Palframan, D. (1969): The ecology and preservation of the Oxford Clay fauna at Woodhan, Bucks. - Q. JI. geol. Soc. Lond., 124: 387-418; London.
Hudson, J. D. \& Palmer, T. J. (1976): A euryhaline oyster from the Middle Jurassic and the origin of the true oysters. - Palaeontology, 19: 79-93; London.
Hudson, R. G. S. (1958): The Upper Jurassic faunas of southern Israel. - Geol. Mag., 95: 415-425; London.
Hull, E. (1857): Geology of the country around Chettenham. Mem. geol. Surv. U. K., Nr. 44: 104 pp ; London.
Ilovaisky', D. (1904): L'Oxfordien et le Séquanien des gouvernements de Moscou et de Riasan. - Byull. mosk. Obshch. Ispȳt. Prir., 17: 222-288; Moskva.
ImiAy, R. W. (1964): Marine Jurassic pelecypods from central and southern Utah. - Prof. Pap. U. S. geol. Surv., Nr. 483 - C: 42pp; Washington.

- (1967): Twin Creek Limestone (Jurassic) in the Western Interior of the United States. - Prof. Pap. U. S. geol. Surv., Nr. 540: 105 pp ; Washington.
Ivimey-COOK, H. C. ([974): The Permian and Triassic deposits of Wales: pp. 295-321. - In: OWEN, T. R. (ed.): The Upper Palaeozoic and post-Palaeozoic rocks of Wales; Cardiff (Univ, Wales Press).
Jaubert, M. (1868): Note sur les formations jurassiques qui recouvrent le versant nord du mont Lozère. - Bull. Soc. géol. Fr. (2), 26: 216-264: Paris.
JAwORSKI, E. (1916): Beiträge zur Kenntnis des Jura in Süd-Amerika. II: Spezieller, paläontologischer Teil. - Neues Jb. Miner. Geol. Paläont. Beilbd, 40: 364-456; Stuttgart.
Jefferies, R. P. S. \& Minton, P. (1965): The mode of life of two Jurassic species of 'Posidonia' (Bivalvia). - Palaeontology, 8: 156-185; London.
JoDOT, P. (1923): Faune Bajocienne du Djebel Mahsseur près d'Oudjda (Maroc Oriental). - Bull. Soc. géol. Fr. (4) 23 : 132-141: Paris.
JOHNSON, A. L. A. (1980): The palaeobiology of the bivalve family Pectinidae in the Jurassic of Europe, - Unpubl. M. S. D. Phil., Univ. Oxford; 2 Vols: 532 and 187 Pp .
- - (1981): Detection of ecophenotypic variation in fossils and its application to a Jurassic scallop. - Lethaia, 14: 277-285; Oslo.
Joly, H. (1907): Les fossiles du jurassique de la Belgique: Première partie: Infra-Lias. - Mem. Mus. r. Hist. nat. Belg., 5: 1-156; Bruxelles.
Jordan, R. (1971): Zur Salinitär des Meeres im höheren Oberen Jura Nordwest-Deutschlands. - Z. dt. geol. Ges., 122: 231-241; Berlin.
Joukowsay, E. \& Favre, J. (1913): Monographie géologique et paléontologique du Salève (Haute-Savoie, France). - Mém. Soc. Phys. Hist. nat. Genève, 37: 295-523; Genève.
Karve-Corvinus, G. (1966): Biostratigraphie des Oxfordium und untersten Kimmeridgium am Mont Crussol, Ardèche, im Vergleich mit Süddeutschland. - Neues Jb. Geol. Paläont. Abh., 126: 101-141; Stuttgart.
Kaufmann, E. G. (1969): Form, Function and Evolution: N129-205-In: MOORe, R. C. (ed.): Treatise on Invertebrate Palaeontology. N: 1, Mollusca: Bivalvia; Kansas (Univ. Printing Service).
- (1978): Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). - Nenes Jb. Geol. Paläont. Abh., 157: 18-36; Stuttgart.
Keferstein, C. (1828): Teutschland, geognostisch-geologisch dargestellt. - 5(3): 426-592; Weimar (Landes-1ndustrie-Comptoir).
Kelly, S. R. A. (1977): The bivalves of the Spilsby Sandstone and contiguous deposits. - Unpubl. M. S. D. Phil., Queen Mary Coll., Univ. of London: 365 pp .
Khudyaev, J. (1928): The Mesozoic deposits of the region of the Syola River, Petschoraland. - Izv. geol. Kom., 46: 497-521; S. Peterburg.

Kilian, W. (1889): Études paléontologiques sur les terrains secondaires et tertiaires de l'Andalousie. - Mém. Acad. Sci. Inst. Fr. (2), 30: 601-762; Paris.

Kilian, W. \& Guebhard, A. (1905): Étude paléontologique et stratigraphique du système Jurassique dans les préalpes maritimes. - Bull. Soc. géol. Fr. (4), 2: 737-828; Paris.
Kirkaldy, J. F. (1963): The Wealden and marine Lower Cretaceous beds of England. - Proc. Geol. Ass., 74: 127-146; London.
Knudsen, J. (1967): The deep-sea Bivalvia. Scientific Reports 'John Murray' Expedition 1933-34, 9: 239-343; London.

- - (1970): The systematics and biology of abyssal and hadal Bivalvia. - Galathea Report, 11: 7-238; Kjøbenhavn.
Koch, C. L. \& Dunker, W. (1837): Beiträge zur Kenntnis des norddeutschen Oolithgebildes und dessen Versteinerungen. 64 pp; Braunschweig (Oehme, Müller).
Krause, P. G. (1908): Über Diluvium, Tertiar, Kreide und Jura in der Heilsberger Tiefbohrung. - Jb. preuß. geol. BergAkad. Landesanst., 28: 185-326; Berlin.
Krenkel, E. (1915): Die Kelloway-Fauna von Popilani in Westrußland. - Palaeontographica, 61: 191-362; Stuttgart.
Krrumbeck, L. (1905): Die Brachiopoden und Molluskenfauna des Glandarienkalkes. - Beitr. Paläont. Geol. Öst.-Ung., 18: 65-162; Wien.
- - (1924): Die Brachiopoden, Lamellibranchiaten und Gastropoden der Trias von Timor. 2. Paläontologischer Teil. - PaLäontologie von Timor (13): 275 pp; Stuttgart (Schweizerbart).
K゙UnN, O. (1935): Die Fauna des untersten Lias δ (Gibbosus-Zone) aus dem Sendelbach im Hauptsmoorwald östlich Bamberg. Neues Jb. Miner. Geol. Paläont. Beilbd (B), 73: 465-493; Stuttgart.
- - (1936): Die Fauna des Amaltheenthon (Lias δ) in Franken. Neues Jb. Miner. Geol. Paläont. Beilbd (B), 75: 231-311; Stuttgart.
Lahusen, I. (1883): Die Fauna der Jurassischen Bildungen des Rjasanischen Gouvernements. - Trudȳ geol. Kom., 1: 1-94; S.Peterburg.
Lamarck, J. B. P. A. de M. de (1819): Histoire naturelle des animaux sans vertèbres. - 6: 343 pp ; Paris (Verdière).
- (1836): Histoire naturelle des animaux sans vertèbres (2nd. ed.). - 7: 735 pp ; Paris (Baillière).
LanQuine, A. (1929): Le Lias et le Jurassique des chaines provençales. 1. Le Lias et le Jurassique inférieur. - Bull. Servs Carte géol. Fr., 32: 41-425; Paris.
Laube, G. C. (1867): Die Bivalven des Braunen Jura von Balin. Denkschr. Akad. Wiss. Wien, Matt. nat. Kl., 27: 11-61; Wien.
Leanza, A. F. (1942): Los Pelecipodos del Lias de Piedro Pintada en el Neuquén. - Revta Mus. La Plata, Secc-Paleont. (N. S.), 2: 143-206; La Plata.
Lentini, F. (1973): I molluschi del Lias inferiore di Lorigi (Sicilia nordorientale). - Boll. Soc. paleont. ital., 12: 23-75; Modena.
Levinton, J. S. (1970): The palaeoecological significance of opportunistic species. - Lethaia, 3: 69-78; Oslo.
Lewinski, J. (1908): Les dépôts jurassiques près la station Checiny et leure faune. - Bull. int. Acad. Sci. Lett. Cracovie, Nr. 5: 408-445; Cracovie.
- (1923): Monographie géologique et paléontologique du Bononien de la Pologne. - Mém. Soc. géol. Fr. (Paléont.), 24: 1-108; Paris.
Leymerie, A. (1838): Mémoire sur la partie inférieure du système secondaire du département du Rhône. - Mém. Soc. géol. Fr. (I), 3: 313-379; Paris.

Lindstrom, G. (1866): Om Trias-och Juraförsteninger tran Spetsbergen. - K. svenska VetenskAkad. Handl., 6. Nr. 6: 20 pp; Stockholm.
Lissajous, M. (1910): Jurassique Mâconnais-fossiles caractéristi ques. - Bull. trimest. Soc. Hist. nat. Mâcon, 3, Nrs. 11, 12: 208 pp; Màcon.

- (1923): Étude sur la faune du Bathonien des environs de Macon. - Trav. Lab. Géol. Univ. Lyon, 3, Nr. 3: 286 pp; Lyon.
Lister, M. (1678): Historium animalium angliae tres tractatus. 250 pp ; London (Martyn).
LORIOL, P. DE (1867): Description des fossiles de 1'Oolithe Corallienne de l'étage Valangien et de l'étage Urgonien du Mont Salève: $100 \mathrm{pp}-\ln$: FAVRE, A. Recherches géologiques dans les parties de la Savoie (1); Genève (Masson).
- (1878): Monographie paléontologique des couches de la zone à Ammonites tenuilobatus (Badener Schichten) de Baden (Argovie). - Abh. schweiz. paläont. Ges., 5: 77-200; Geneve.
- (1881): Monographie paléontologique des couches de la zone à Ammonites tenuilobatus (Badener Schichten) d'Oberbuchsitten et de Wangen (Soleure). - Abh. schweiz. paläont. Ges., 8: 61-120; Genève.
- (1893): Études sur les mollusques des couches coralligènes inférieures du Jura Bernois. Partie 4. - Abh. schweiz. paläont. Ges., 19: 261-419; Genève.
- (1894): Étude sur les mollusques du Rauracien Inférieur du Jura Bernois. - Abh. schweiz. paläont. Ges., 21: 1-129; Genève.
- - (1895): Étude sur les mollusques du Rauracian Supérieur du Jura Bernois. - Abh. schweiz. paläont. Ges., 22: 1-51; Genève.
- - (1897): Étude sur les mollusques et brachiopodes de l'Oxfordien Supérieur et Moyen du Jura Bernois. - Abh. schweiz. paläont. Ges., 24: 78-158; Genève.
- - (1899): Étude sur les mollusques et brachiopodes de l'Oxfordien Inférieur ou zone à Ammonites Renggeri du Jura Bernois. - Abh. schweiz. paläont. Ges., 26: 119-184; Genève.
- - (1900): Étude sur les mollusques et brachiopodes de l'Oxfordien Inférieur ou zone à Ammonites renggeri du Jura Lédonien. - Abh. schweiz. paläont. Ges., 27: 1-143; Genève.
- - (1901): Étude sur les mollusques et brachiopodes de l'Oxfordien Superieur et Moyen du Jura Bernois (Supplement 1). Abh. schweiz. paläont. Ges., 28: 1-119; Genève.
- (1904): Étude sur les mollusques et brachiopodes de l'Oxfordien Supérieur et Moyen du Jura Lédonien. - Abh. schweiz. paläont. Ges., 31: 161-303; Genève.
Loriol, P. DE \& COTTEAU, G. (1868): Monographie paléontologique et géologique de l'étage Portlandien du Département de l'Yonne. - Bull. Soc. Sci. hist. nat. Yonne (2), 1: 1-239; Auxerre.
Loriol, P. DE \& Lambert, J. (1893): Description des mollusques et brachiopodes des couches Séquaniennes de Tonnerre (Yonne). - Abh. schweiz. paläont. Ges., 20: 1-213; Genève.
Loriol, P. de \& Pellat, E. (1866): Monographie paléontologique et géologique de l'étage Portlandien des environs de Boul-ogne-sur-Mer. - Mém. Soc. Phys. Hist. nat. Genève, 19: 1-200; Genève.
- - (1875): Monographie paléontologique et géologique des étages Jurassiques supérieurs de Bonlogne sur Mer. - Mém. Soc. Phys. Hist. nat. Genève, 24: 1-326; Genève.
Loriol, P. de., Royer, E. \& Tombeck, H. (1872): Monographie paléontologique et géologique des étages supérieurs de la formation Jurassique. - Mém. Soc. linn. Normandie, 16: 1-539; Paris.
Loriol, P. DE \& SChARDT, H. (1883): Étude paléontologique et stratigraphique des couches à Mytilus des Alpes Vaudoises. Abh. schweiz. paläont. Ges., 10: 1-140; Genève.
Lundgren, B. (1878): Studier öfver faunan i den stenkolsförande formationen i nordvästra Skåne. -57 pp ; Lund (Berling).
- (1881): Undersökningar öfver molluskfaunan i Sveriges äldre mesozoiska bildningar. - Acta. Univ. Lund., 17: 1-57; Lund.
- (1883): Bemerkungen über die von der Schwedischen Expedition nach Spitzbergen 1882 gesammelten Jura und Trias-Fossilien. - Bih. K. svenska VetenskAkad. Handl., 8, Nr. 12: 22 pp ; Stockholm.
- - (1895): Amärkningar om nàgra Juralossil fran Kap Stewart; Ost Grönland. - Meddr. Gronland, 19: 189-214; Kjobenhavn.
LyCETT, J. (1863): Supplementary monograph on the Mollusca from the Stonesfield Slate, Great Oolite, Forest Marble, and Cornbrash. - Palaeontogr. Soc. [Monogr.]: 129 pp; London.
Manowskt, H. (1952): La faune Callovienne de Luków en Pologne. Palaeont. pol., Nr. 4: 64 pp; Varsoviae.
Martin, J. (1860): Paléontologie stratigraphique de l'Infra-Lias du département de la Cóte d'Or. - Mem. Soc. géol. Fr. (2), 7 : 1-101: Paris.
MARWICK, J. (1953): Divisions and faunas of the Hokonui System (Triassic and Jurassic) - Palaeont. Bull., Wellington, Nr. 21: 141 pp; Wellington, N. Z.
Matthews, S. C. (1973): Notes on open nomenclature and synonymy lists. - Palacontology, 16: 713-719; London.
Mauberge, P. L. (1951): Sur la presence de la zone à Dactylioceras semicelatum dans le Grand-Duché de Luxembourg. - Bull. Soc. belge Gėol. Palćont. Hydrol., 60: 365-373; Bruxelles.
- (1971): A propos du dimorphisme sexuel chez les fossiles: Radulopecten ragans Sowerby et Radulopecten anomalus Terquem. - Bull. Soc. lorr. Sci., 10: 25-29; Paris.
Medcof, J. C. \& Bourne, N. (1964): Causes of mortality of the sea scallop Placopecten magellancus. Proc. natn. Shellfish. Ass., 53: 33-50; Washington.
Meek, F. B. (1864) : Checklist of the invertebrate fossils of North America: Cretaceous and Jurassic. - Smithson. misc. Collns, 7: 40 pp ; Washington.
Mefh, F. B. (1865): Description of fossils from the auriferous slates of California. - Geol. Surv. Calif., Geology, 1: 477-482; Philadelphia.
Megnifn, C., Megnien, F. \& Turland, M. (1970): Le recif Oxfordien de l'Yonne et son environment sur la feuille Vermenton. Bull. Bur. Rech. geol. min. (Sect. 1), 3: 83-115; Paris.
Meivilie, R. V. (1956): Stratigraphical palaeontology; ammonites excluded, of the Stowell Park Borehole. - Bull. geol. Surv, Gt. Br., 11: 67-139; London.
Meneghini, G. (1880): Fossili oolitici di Monte Pastello nella provincia di Verone. - Memorie Soc. tosc. Sci. Nat., 4: 336-362; Pisa.
Meneghini, J. (1867-81): Monographie des fossiles du calcaire rouge ammonitique (Lias Supérieur) de Lombardie et de l'Appenin Central. - 242 pp ; Milan (Reheschini).
MEnsink, H. (1965): Stratigraphie und Palaogeographie des marinen Jura in den nordwestlichen Iberischen Ketten. - Beih. geol. Jb., 44: 55-102; Hannover.
Moberg, J. C. (1888): On Lias I Sydostra Skăne. $-\mathbb{K}$. svenska Vet enskAkad Handl., 22, Nr. 6: 86 pp ; Stockholm.
MOricke, W. (1894): Versteinerungen des Lias und Unteroolith von Chile. - Neues Jb. Miner. Geol. Paläont. Beilbd, 9: 1-100; Stuttgart.
Montagu, G. (1803): Testacea Britannica. Part 1. - pp. 1-291; Romsey (Hollis).
Morbey, S. J. (1975): The palynostratigraphy of the Rhaetian stage, Upper Triassic, in the Kendelbachgraben, Austria. - Palacontographica (B), 152: 1-75; Stuttgart.
Morris, J. \& Licett, J. (1851-55): A monograph of Mollusca from the Great Oolite. - Palacontogr. Soc. [Monogr.]: (1), 1851, Univalves: $1-130 ;(2), 1853$, Bivalves: $1-80 ;(3), 1855$, Bivalves: 81-147; London.
MOUTERDE, R. (1953): Études sur le Lias et le Bajocien des bordures nord et nord-est dumassif central Français, - Bull. Servs Carte geol. Fr., 50: 63-521; Paris.
MUller, C. F. (1776): Zoologiae Danicae Prodromus, seu Animalium Daniae et Norvegiae Indigenarum, characteres, nomina et synonyma imprimis popularium. -282 pp ; Copenhagen.
McLearn, F. H. (1924): New Pelecypods from the Fernie Formation of the Alberta Jurassic. - Proc. Trans. R. Soc. Can., 18 (Sect. 4): 39-61; Ottawa.
NEALE, J. W. (1956): Chlamys (Radulopecten) drewtonensis sp. nov. - Proc. Yorks. geol. Soc. 30: 371-374; Hull.

Neumayr, M. (1871): Die Vertretung der Oxfordgruppe im östlichen Theile der mediteranen Provinz. - Jb. geol. Bundesanst., Wien, 21: 355-378; Wien.

- (1879): Zur Kenntniss der Fauna des Untersten Lias in den Nordalpen. - Abh. geol. Bundesanst., Wien, 7: 1-46; Wien.
NEWTON, R. B. (1921): On a marine Jurassic fauna from central Arabia. - Annls. Mag. nat. hist. (9), 7: 389-403; London.
Nicol, D. (1967): Some characteristics of cold-water marine pelecypods. - J. Paleont., 41: 1330-1340; Lawrence, Kansas.
Nicolis, E. \& Parona, C. F. (1885): Note stratigrafiche e paleontologiche sul Giura superiore della Provincia di Verona. - Boll. Soc. geol. ital., 4: 1-95; Roma.
Nitzopouios, G. (1974): Faunistisch-ökologische, stratigraphische und sedimentologische Untersuchungen am Schwamm-stot-zen-Komplex bei Spielberg am Hahnenkamm. - Stuttg. Beitr. Naturk. (B), Nr. 16: 143 pp; Stuttgart.
NyST, P. H. (1843): Description des coquilles et des polypiers fossiles des terrains tertiaires de la Belgique. -697 pp; Bruxelles (Hayez).
OERTEL, W. (1924): Die Stellung des anstehenden Lias in Mecklenburg. - Neues Jb. Miner. Geol. Paläont., 49: 550-593: Stuttgart.
Opin. Decl. 1nt. Commn. Zool. Nom. (1936): 1 (B), Opinion 126: 469-486; London.
Oppel, A. (1853): Der mittlere Lias schwäbens. - Jh. Ver. vaterl. Naturk. Wurt., 10: 92 pp ; Stuttgart.
- (1858): Die Juraformation Englands, Frankreichs und des südwestlichen Deutschlands. -857 pp; Stuttgart (Ebner, Seubert).
- (1866): Uber die Zone des Ammonites transversarius. pp205-318. In: Benecke. E. W.: Beitrag zur Kenntnis der Jura in Deutsch-Lothringen. - Abh. geol. Spezkarte. Els.Loth. (N. S.), 1; München.
Orbigny, A. D' (1850): Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés. $-1: 394 \mathrm{pp}$; 2: 428 pp; Paris (Masson).
Paine, R. T. (1976): Size limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction. Ecology, 57: 858-873; Durham, N. C.
Palmer, C. P. (1966a): Note on the fauna of the Margaritatus Clay (Blue Band) in the Domerian of the Dorset coast. - Proc. Dorset. nat. Hist. archaeol. Soc., 87: 67-68; Dorchester.
- - (1966b): The fauna of Day's Shell Bed in the Middle Lias of the Dorset coast. - Proc. Dorset. nat. Hist. archaeol. Soc., 87: 69-80; Dorchester.
Palmer, T. J. (1974): Some palaeo-ecological studies in the M. and U. Bathonian of Central England and N. W. France. - Unpubl. M. S. D. Phil., Univ. Oxford: 279 pp.
_ . (1979): The Hampen Marly and White Limestone formations: Florida-type carbonate lagoons in the Jurassic of central England. - Palacontology, 22: 189-228; London.
Palmer, T. J. \& Fursich, F. T. (1981): Ecology of sponge reefs from the Middle Jurassic of Normandy. - Palacontology, 24: 1-23; London.
Parent, H. (1940): Faune du Bradfordian et du Cornbrash du Valau-ry-Saint-Hubert (Var). - C. r. Somm. Seanc. Soc. géol. Fr., Year 1940: 31-32; Paris.
Paris, E. T. \& Richardson, L. (1916): Some Inferior Oolite Pectinidae. - Q. Jl. geol. Soc. Lond., 71: 521-535; London.
Parona, C. F. (1892): Revisione della fauna Liasica di Gozzano in Piemonte, - 59 pp; Torino.
- (1895): Nuove osservazioni sopra la faune e l'eta degli strati con Posidonomya alpina nei Sette Comuni. - Palaeontogr. Ital., 1: 1-42; Pisa.
PERON, M. (1905): Études paléontologiques sur les terrains du département de I'Yonne. - Bull. Soc. Sci. hist. nat. Yonne, 59: 33-266; Auxerre.
Philippi, E. (1898): Beiträge zur Morphologie und Phylogenie der Lamellibranchier. - Z. dt. geol. Ges., 50: 597-622; Berlin.
- - (1900): Beirräge zur Morphologie und Phylogenie der Lamellibranchier. II. Zur Stammesgeschichte der Pectiniden. - Z. dt. geol. Ges., 52: 64-117; Berlin.
Phillifs, J. (1829): Illustrations of the geology of Yorkshire. 192 pp; York (Wilson). 2nd ed. (1835); York (Murray).
- (1871): Geology of Oxford and the valley of the Thames. 523 pp ; Oxford (Clarendon).
Plot, R. (1705): The natural history of Oxfordshire (2nd ed.). 356 pp; London (Lichfield).

Pompeckj, J. F. (1897): Paläontologische und stratigraphische Notizen aus Anatolien. - Z. dt. geol. Ges., 44: 713-828; Berlin.
Poole, E. G. (1979): The Triassic-Jurassic boundary in Great Britain. - Geol. Mag., 116: 303-311; London.
Preuschoft, H., Fritz, M., \& Kramer, T. (1975): Beziehungen zwischen mechanischer Beanspruchung und Gestalt bei Wirbellosen: Spannungsanalyse an Muschel-Klappen. - Neues Jb. Geol. Paläont. Abh., 150: 161-181; Stuttgart.
Pyrah, B. J. (1977): Catalogue of type and figured fossils in the Yorkshire Museum: Part 2. - Proc. Yorks. geol. Soc., 41: 241-260; Hull.
Quenstedt, F. A. (1843): Das Flözgebirge Württembergs. Mit besonderer Rücksicht auf den Jura. -560 pp ; Tübingen (Laupp).

- - (1852): Handbuch der Petrefactenkunde. - 792 pp; Tübingen (Laupp).
- (1858): Der Jura. -823 pp ; Tübingen (Laupp).

Ravn, J. P. J. (1910): On Jurassic and Cretaceous fossils from North-East Greenland. - Meddf. Gronland, 45: 437-500; Kjobenhavn.
Read, H. H., Ross, G. \& Phemister, J. (1925): The geology of the country around Golspie, Sutherlandshire. - Mem. Geol. Surv. U. K.: 147 pp ; London.
Reif, W.-E. (1978): Plicae and cardinal crura in pectinids: Protective devices against starfish predation? - Neues Jb. Geol. Paläont. Abh., 157: 115-118; Stuttgart.
Remes, M. (1903): Nachträge zur Fauna von Stramberg. 1V. Uber Bivalven der Stramberger Schichten. - Beitr. Paläont. Geol. Óst.-Ung., 15: 185-219; Wien.
Retowski, O. (1893): Die tithonischen Ablagerungen von Theodosia. - Byull. mosk. Obshch. Ispȳt. Prir., Nrs. 2 and 3:95pp; Moskva.
RIAZ, A. DE (1900): Note sur l'étage Toarcien de la région lyonnaise et de Saint-Roman-au-Mont d'Or en particulier. - Bull. Soc. géol. Fr. (4), 6: 607-625; Paris.
Richardson, L. (1907): The Inferior Oolite and contiguous deposits of the Bath-Doulting district. - Q. Jl. geol. Soc., Lond., 63: 383-436; London.

- (1910): The Inferior Oolite and contiguous deposits of the south Cotswolds. - Proc. Cotteswold Nat. Fld. Club, 17: 63-136; Gloucester.
- - (1911): Inferior Oolite and contiguous deposits of the Chipping Norton district. - Proc. Cotteswold Nat. Fld. Club, 17: 195-231; Gloucester.
- - (1916): The Inferior Oolite and contiguous deposits of the Doulting-Milborne Port district (Somerset). - Q. Jl. geol. Soc. Lond., 71: 473-519; London.
- - (1927): The inferior and contiguous deposits of the Burton Bradstock-Broadwindsor district, Dorset. - Proc. Cotteswold Nat. Fld. Club, 23: 149-185; Gloucester.
Riche, A. (1893): Étude stratigraphique sur le Jurassique inférieur du Jura méridional. - Annls Univ. Lyon, 6, Pt. 3: 396 pp; Lyon.
Roeder, H. A. (1882): Beiträge zur Kenntnis des Terrain à Chailles und seiner Z weischaler in der Umgegend von Pfirt in Oberelsaß. - 110 pp ; Strasbourg (Schultz).
Roemer, F. A. (1836): Die Versteinerungen des Norddeutschen Oo-lithen-Gebirges. -218 pp ; Hannover (Hahn). Ein Nachtrag (1839): 59 pp .

Rollier, L. (1911): Les facies du Dogger ou Oolithique dans le Jura et les régions voisines. - Mem. Fondation Schnyder, 352 pp; Zürich (Georg).

- - (1915): Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoiq̣ues) du Jura et des contrées environnantes. 5. - Abh. schweiz. paläont. Ges., 41: 447-500; Genève.

ROMAN, F. (1926): Geologie Lyonnaise. - 356 pp; Paris (Presse Univ. France).

- - (1950): V1. Le Bas-Vivarais. - Actual. scient. ind., Nr. 1090: 150 pp ; Paris.
Rosenkrantz, A. (1934): The Lower Jurassic rocks of East Greenland. - Part I. - Meddr. Gronland, 110, Nr. 1: 122 pp; Kjøbenhavn.
— - (1942): The Lower Jurassic rocks of East Greenland. Part 11. The Mesozoic sediments of the Kap Hope area, southern Liverpool Land. - Meddr. Gronland, 110, Nr. 2: 56 pp ; Kjobenhavn.

Rossi Ronchetti, C. \& Fantini Sestini, N. (1961): La fauna Giurassica di Karkar (Afghanistan). - Riv. ital. Paleont. Stratigr., 67: 103-152; Milano.
Rothpletz, A. (1886): Geologisch-palaeontologische Monographie der Vilser Alpen, mit besonderer Berücksichtigung der Brach-iopoden-Systematik. - Palaeontographica, 33: 1-180; Stuttgart.
RuDwick, M. J. S. (1964): The inference of function from structure in fossils. - Br. J. Phil. Sci., 15: 27-40; Edinburgh.

- - (1970): Living and fossil brachiopods. - 199 pp; London (Hutchinson).
Russell, P. J. C. (1972): A significance in the number of ribs in the shells of two closely related Cardium species. - J. Conch., Lond., 27: 401-409; London.
SACCO, F. (1886): Studio geo-paleontologico sul Lias dell'alta valle della Stura di Cuneo. - Boll. R. Comm. geol. ital., 17: 6-27; Roma.
Salin, E. (1935): Monographie des calcaires du Barrois. - Bull. Soc. géol. Fr. (5), 5: 117-165; Paris.
SANDERS, H. L. (1968): Marine benthic diversity: a comparative study. - Am. Nat., 102: 243-282; Lancaster, PA.
- - (1969): Benthic marine diversity and the stability-time hypothesis. - Brookhaven Symp. Biol., 22: 71-80; Upton, N. Y.
Sauvage, C. \& Buvignier, A. (1842): Statistique minéralogique et géologique du département des Ardennes. - 554 pp; Mézières (Trécourt).
Sauvage, H. E. \& Rigaux, E. (1872): Description d'espèces nouvelles des terrains jurassiques de Boulogne-sur-Mer (Pas de Calais). - J. Conch., Paris, 20: 165-187; Paris.
Scharmautl, K. (1851): Uber einige neue Petrefakten des Südbayern'schen Vorgebirges. - Neues Jb. Miner. Geol. Paläont., Year 1851: $407-421$; Stuttgart.
Schindel, D. E. \& Gould, S. J. (1977): Biological interaction between fossil species: character displacement in Bermudian land snails. - Paleobiology, 3: 259-269; Lancaster, PA.
Schlippe, A. O. (1888): Die Fauna des Bathonien im ober-rheinischen Tieflande. - Abh. geol. SpezKarte. Els.-Loth., 4: 266 pp ; Strassburg.
SChlonbach, U. (1863): Ueber den Eisenstein des mittleren Lias im nord-westlichen Deutschland, mit Berücksichtigung der älteren und jüngeren Lias-Schichten. - Zeit. dt. geol. Ges., 15: 465-566; Berlin.
Schlosser, M. (1911): Die Fauna des Lias und Dogger in Franken und der Oberpfalz. - Z. dt. geol. Ges., 53: 513-569; Berlin.
SChlotheim, E. F. von (1813): Beiträge zur Natur-geschichte der Versteinerungen in geognostischer Hinsicht. - Min. Taschenbuch, 7: 3-134; Frankfurt am Main.
- - (1820): Die Petrefactenkunde. - 437 pp ; Gothenburg (Bekker).
SEEBACH, K. VON (1864): Der Hannoversche Jura. - 170 pp; Berlin (Hertz).
SEILACHER, A. (1972): Divaricate patterns in pelecypod shells. Lethaia, 5: 325-343; Oslo.
SELIWOOD, B. W. (1972): Regional environmental changes across a Lower Jurassic stage boundary in Britain. - Palaentology, 15: 125-157; London.
- (1978): Jurassic: pp. 204-279-1n: McKerrow, W. S. (ed.): The Ecology of Fossils; London (Duckworth).
Sellwood, B. W. \& McKerrow, W. S. (1974): Depositional environments of the lower part of the Great Oolite Group of Oxfordshire and North Gloucestershire. - Proc. Geol. Ass., 85: 189-210; London.
Semenow, B. (1896): Faune des dépôts jurassiques de Mangychlak et de Tonar Kyr. - Trudȳ imp. S-Peterb. Obshch. Estest., 23: 9-19; S. Peterburg.
Sharpe, D. (1850): On the secondary district of Portugal which lies on the north of the Tagus. - Q. Jl. geol. Soc. Lond., 6: 135-200; London.
Siemiradzki, J. von (1893); Der obere Jura in Polen und seine Fauna. - Z. dt. geol. Ges., 45: 103-144; Berlin.
Simionescu, 1. (1898): Uber die Kelloway-fauna von Valea Lupulei in den Südkarpathen Rumäniens. - Verh. K. K. geol. Reichsanst., Wien, Nr. 18: 410-415; Wien.
- (1899): Studii geologice si paleontologice din Carpatii Sudici. III. Fauna Calloviana din Valea Lupului (Rucar). - Publs Fond. Adamachi Acad. Româna, 1: 189-214; Bucuresti.
- (1910): Studii geologice si paleontologice din Dobrogea. II. Lamellibranchiatele, Gastropodele, Brachiopodele si Echinodermele din pàturile Jurasice dela Hârsova. - Acad. Romana Publs., Nr. 25: 109 pp; Bucuresti.
Simpson, M. (1884): The fossils of the Yorkshire Lias. - 256pp; Whitby (Forth).
SKWARKO, S. K. (1974): Jurassic fossils of Western Australia. - Bull. Bur. Miner. Resour. Geol. Geophy`. Aust., 150: 43-56; Melbourne.
Siifth, A. G. \&i Briden, J. C. (1977): Mesozoic and Cenozoic palaeocontinental maps. -63 pp ; Cambridge, U. K. (Univ. Press).
SOEMODIHARDJO, S. (1974): Aspects of the biology of Chlamys operculuris (L.) (Bivalvia) with comparative notes on four allied species. - Unpubl. M1. S. D. Phil., Univ. Liverpool.
Sokolov, D. \& BODYLEVSKY, W. (1931): Jura- und Kreide-faunen von Spitzbergen. - Skr. Svalbard Ishavet, Nr. 35: 151 pp ; Oslo.
Sowerby, J. (1812-22): The Mineral Conchology of Great Britain. 1 (1), 1812: 9-32; (2), 1813: 33-96; (3), 1814: 97-178; (4), 1815: 179-236. $2(1), 1815: 1-28 ;(2), 1816: 29-116 ;(3), 1817$: 117-194: (4), 1818: 195-239. 3 (1), 1818: 1-40; (2), 1819: 41-98; (3), 1820:99-126; (4), 1821:127-186.4(1), 1821:1-16; (2), 1822: 17-104; London (Meredith).

Sowerbx, J. De C. (1822a-46a): The Mineral Conchology of Great Britain.-4(3), 1822: 105-114; (4), 1823:115-151.5(1), 1823: 1-64; (2), 1824:65-138; (3), 1825:139-171.6 (1), 1826:1-86; (2), 1827: 87-156; (3), 1828: 157-200; (4), 1829: 201-235; (Preface to the general indexes and systematic index to the six volumes), 1835: 239-250; (Alphabetic index to volumes 1-6), 1840; 1-11.7(1), 1840?:1-8;(2), 1841:9-16; (3), 1843:17-24; (4), 1844: 25-56; (5), 1846:57-80; London (Meredith).

SOWERBY; J. DE C. (1840b); Description of fossils from the Upper Secondary Formation of Cutch collected by C. W. Grant. Trans. Geol. Soc. Lond. (2), 5: p. 328; London.
SPATH, L. F. (1932): The invertebrate faunas of the Bathonian-Callovian deposits of Jameson Land (East Greenland). - Meddr. Gronland, 87, Nr. 7: 158 pp; Kjobenhavn.

- (1935): The Upper Jurassic invertebrate faunas of Cape Leslie, Milne Land. J. Oxfordian and Lower Kimmeridgian. Meddr. Gronland, 99, Nr. 2: 82 pp; Kjobenhavn.
- - (1936): The Upper Jurassic invertebrate faunas of Cape Leslie, Milne Land. 1I. Upper Kimmeridgian and Portlandian. Meddr. Gronland, 99, Nr. 3: 180 pp ; Kjobenhavn.
Stafsche, K. von (1926): Die Pectiniden des Schwäbischen Jura. Geol. paläont. Abh. (N. S.), 15: 136 pp; Jena.
Stanley, S. M. (1970): Relation of shell form to life habits in the Bivalvia (Mollusca). - Mern. geol. Soc. Aın., Nr. 125: 296pp; Washington.
STASEK, C. R. (1963): Geometrical form and gnomonic growth in the biavalved Mollusca. - J. Morph., 112: 215-231; Philadelphia.
Stefanini, G. (1925): Description of fossils from South Arabia and British Somaliland. Appendix 1: pp, 143-221-1n: Little, O. H.: The Geography and Geology of Makalla (South Arabia); Cairo (Government Press).
- - (1939): Molluschi del Giuralias della Somalia. Gastropodi e Lamellibranchi. - Palacontogr. ital., 32: 103-270; Pisa.
Steinmann, G. (1881): Zur Kenntnis der Jura- und Kreideformation von Caracoles (Bolivia). - Neues Jb. Miner. Geol. Paläont. Beilbd, 1: 239-301; Stuttgart.
Stoliczka, F. (1861): Uber die Gastropoden und Acephalen der Hierlatz-Schichten. - Sbet. Akad. Wiss. Wien, 43: 157-204; Wien.
- - (1870-71): The Pelecypoda, with a review of all known genera of this class, fossil and Recent: $537 \mathrm{pp} .-1 \mathrm{n}$: The Cretaceous faunas of India. - Mem. geol. Surv. India Palaeont. indica, 3 : Calcutta.
Stoll, E. (1934): Die Brachiopoden und Mollusken der pommerschen Doggergeschiehe. - Abh. geol.-palcont. Inst. Greifswald, 13: 1-62; Greifswald.
Stoll, N. R., Dollfus, R. Ph., Forest, J., Riley, N. D., Sabros Ki, C. W., Wright, C. W. \& Melville, R. V. (eds.). (1964): International code of Zoological Nomenclature adopted by
the XVth International Congress of Zoology. - 176 pp ; Bungay, Suffolk (Clay).
Stoppani, A. (i860): Geologie et Paléontologie des couches à Avicula contorta en Lombardie. - Paléont. Lombardie, 3: 267 pp ; Milano.
SyKes, R. (1975): Facies and faunal analysis of the Callovian and Oxfordian stages (M . and U_{P}. Jurassic) in northern Scotland and east Greenland. - Unpubl. M. S. D. Phil., Univ. Oxford: 312 pp .
Sylvester-Bradiey, P. C. (1968): The 1nferior Oolite Series: pp. 211-226-1n: Sylvester-Bradley, P. C. and Ford, T.: The Geology of the East Midlands; Leicester (Univ. Press).
Talbot, M. R. (1973): Major sedimentary cycles in the Corallian Beds (Oxfordian) of southern England. - Palaeogeogr. Palaeoclimatol. Palaeoecol., 14: 293-313; Amsterdam.
Tamura, M. (1959): Taxodonta and Jsodonta from the Upper Jurassic Sakomoto Formation in Central Kyushu, Japan. - Trans. Proc. palaeont., Soc. Japan (N. S.), Nr. 34: 53-65; Tokyo.
- (1973): Two species of Lower Cretaceous Parvamzssium from Kyushu, Japan and Sarawak, Borneo: pp. 119-124.- In: Kobayayashi, T. \& Toriyama, R. (eds.): Geology and Palacontology of Southeast Asia (10); Tokyo.
Tate, R. \& Blake, J. F. (1876): The Yorkshire Lias. -475 pp; London (Van Voorst).
Tauber, C. A. \& Tauber, M. J. (1977a): Sympatric speciation based on allelic changes at 3 loci: evidence from natural populations in two habits, - Science, N. Y., 197: 1298-1299; Washington.
- (1977b): A genetic model for sympatric speciation through habitat diversification and seasonal isolation. - Nature, Lond., 268: 702-705; London.
Tausch von Gloeckelsthurn, L. (1890): Zur Kenntnis der Fauna der Grauen Kalke der Süd-Alpen. - Abh. geol. Bundesanst., Wien: 15, 1-40; Wien.
TAWNEY, E. B. (1866): On the western limit of the Rhaetic Beds in South Wales and on the position of the Sutton Stone. - Q. Jl. geol. Soc. Lond., 12: 69-93; London.
TAylor, J. D., Kennedy, W. J. \& Hall, A. (1969): The shell structure and mineralogy of the Bivalvia. Introduction. Nucula-cea-Trigonacea. - Bull. Br. Mus. nat. Hist. (Zool.), Supp. 3: 125 pp ; London.
Tebble, N. (1966): British Bivalve seashells.-212 pp; Edinburgh (H. M. S. O.).

Terquem, M. O. (1855): Paléontologie de l'étage inférieur de la formation Liasique de la Province de Luxembourg, Grand-Duché (Hollande) et de Hettange. - Mém. Soc. geol. Fr. (2), 3: 219-343; Paris.
Terquem, M. O. \& Jourdy, E. (1869): Monographie de l'étage Bathonien dans le département de la Moselle. - Mém. Soc. geol. Fr. (2), 9: 1-175; Paris.
Terquem, M. O. \& Piette, E. (1865): Le Lias 1nférieur de l'est de la France. - Mém. Soc. géol. Fr. (2), 8: 1-175; Paris.
Thayer, C. W. (1972): Adaptive features of swimming monomyarian bivalves. - Forma et Functio, 5: 1-32; Oxford.

- - (1975): Strength of pedicle attachment in articulate brachiopods: ecologic and palaeoecologic significance. - Paleobiology, 1: 388-399; Lancaster, PA.
Thomas, G. E. \& Grufydd, Ll. D. (1976): The types of escape reactions elicited in the scallop Pecten maximus by selected seastar species. - Mar. Biol., 10: 87-93; New York.
Thurmann, J. (1833): Essai sur les soulèvements jurassiques du Porrentruy. - Mém. Soc. Hist. nat. Strasbourg, 1, Book 2, Pt. 2: 1-85; Strasbourg.
Thurmann, J. \& Étallon, A. (1862): Lethea Bruntrutana. - Neue Denkschr. allg. schweiz. Ges. ges. Naturw., 19: 146-353; Zürich.
Tietze, E. (1872): Geologische und paläontologische Mittheilungen aus dem südlichen Theil des Banater Gebirgsstockes. - Jb. geol. Bundesanst., Wien, 22: 34-142; Wien.
Tilmann, N. (1917): Die Fauna des unteren und mittleren Lias in Nord- und Mittel-Peru. - Neues Jb. Miner. Geol. Paläont. Beilbd, 41: 628-712; Stuttgart.
Timoshenko, S. \& Woinowsk צ-Krieger, S. (1959): Theory of plates and shells (2nd ed.). - Eng. Soc. [Monogr.]: 580 pp ; New York.

Toni, A. DE (1912): La fauna Liasica di Vedano (Belluno). Parte seconda: Molluschi. - Abh. schweiz. paläont. Ges., 38: 33-51; Genève.
Tornquist, A. (1898): Der Dogger am Espinazito-Paß, nebst einer Zusammenstellung der jetzigen Kenntnisse von der argentinischen Juraformation. - Paläont. Abh. (N. S.), 4, Nr. 2:72 pp; Berlin.
Torrens, H. S. (1968): The Great Oolite Series: pp. 227-263.-In: Sylvester-Bradiey, P. C. and Ford, T: The Geology of the East Midlands; Leicester (Univ. Press).
Townson, W. G. (1971): A facies analysis of the Portland Beds. A description and interpreted environmental history of the Portland Group in England and France with particular emphasis on the exposures in Dorset. - Unpubl. M. S. D. Phil. Univ. Oxford. 2 vols: 181 and 284 pp .

- - (1975): Lithostratigraphy and deposition of the type Portlandian. - Jl. geol. Soc. Lond., 131: 619-638; London.
Trauth, F. (1909): Die Grestener Schichten der österreichischen Voralpen und ihre Fauna. - Beitr. Paläont. Geol. Ost.-Ung., 22: 1-142; Wien.
'Trautschold, H. (1861): Der Moskauer Jura, verglichen mit dem West-Europäischen. - Z. dt. geol. Ges., 13: 361-452; Berlin.
- - (1862): Recherches géologiques aux environs de Moscou. Fossiles de Kharachova et Supplement. - Byull. mosk. Obshch. Ispȳt. Prir., Year 1861: 1-11; Moscou.
Troedsson, G. (1951): On the Höganäs series of Sweden (RhaetoLias). - Skr. miner.-o. paleont.-geol. Inst. Lund, Nr. 7: 1-269; Lund.
Turton, W. (1822): Conchylia Insularum Britanicarumı. - 279 pp; Exeter (Cullum).
Tzankov, V. \& Boncev, E. (1932): La faune liasique de KalotinaBulgarie de l'Ouest.-Spis. bulg. geol. Drush., 4: 221-244; Sofiya.
Uhlig, V. (1884): Ueber Jurafossilien aus Serbien. - Verh. K. K. geol. Reichsanst., Wien. Year 1884: 178-186; Wien.
Urlichs, M. (1966): Zur Fossilführung und Genese des Feuerlettens, der Rät-Lias-Grenzschichten und des unteren Lias bei Nürnberg. - Erlanger Geol. Abh., Nr. 64: 42 pp; Erlangen.
Vacek, M. (1886): Úber die Fauna der Oolithe von Cap S. Vigilio verbunden mit einer Studie über die obere Liasgrenze. - Abh. geol. Bundesanst., Wien, Year 1886: 57-212; Wien.
Vecchia, O. (1945): Una fauna retico-liassica della sponda occidentale Sebina (Bergamo). - Pubbl. Ist. Geol. Paleont. Geogr. fis. R. Univ. Milano (P), Nr. 41: 1-27; Milano.

Vermeij, G. J. (1977): The Mesozoic marine revolution: evidence from snails, predators and grazers. - Paleobiology, 3: 245-258; Lancaster, PA.
Verneull, M. De \& COLlomb, E. (1852): Coup d'oeil sur la constitution géologique de quelques provinces de l'Espagne. - Bull. Soc. géol. Fr. (2), 10: 61-147; Paris.
Verrill, A. E. (1897): A study of the family Pectinidae, with a revision of the genera and subgenera. - Trans. Conn. Acad. Arts Sci., 10: 41-96; New Haven.
Vetrers, H. (1905): Die Fauna der Juraklippen zwischen Donau und Thaya. - Beitr. Paläont. Geol. Ost.-Ung., 17: 233-259; Wien.
Waagen, W. (1867): Ueber die Zone des Ammonites Sowerbyi. pp. 507-668. In: Benecke, E. W. Beitrag zur Kenntnis der Jura in Deutsch-Lothringen. - Abh. geol. SpezKarte. Els.Loth. (N. S.), 1; München.
Waddington, C. H. (1957): The strategy of the genes. -262 pp; London (Allen, Unwin).
Wainwright, S. A., Biggs, W. D., Currey, J. D. \& Gosline, J. M. (1976): Mechanical design in organisms. - 423 pp; London (Arnold).
Waller, T. R. (1969): The evolution of the Argopecten gibbus stock (Mollusca: Bivalvia), with emphasis on the Tertiary and Quaternary species of eastern North America. - Paleont. Soc. Mem. 3 (J. Paleont. 43, Suppl.): 125 pp; Lawrence.

- (1971): The glass scallop Propeamussium, a living relict of the past. - Ann. Rep. Am. malac. Un., Year 1970: 5-7; ? Buffalo.
- - (1972a): The functional significance of some shell microstructures in the Pectinacea. - 24th Int. geol. Congr. (Sect. 7), Nr. 24: 48-56; Montreal.
- - (1972b): The Pectinidae of Eniwetok Atoll, Marshall Islands. - Veliger, 14: 221-264; Berkeley.
- (1978): Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). - Phil. Trans. R. Soc. (B), 284: 345-365; London.

Wandel, G. (1936): Beiträge zur Kenntnis der jurassischen Molluskenfauna von Misol, Ost-Celebes, Buton, Serran und Jamdena. - Neues Jb. Miner. Geol. Paläont. Beilbd (B), 75: 447-526; Stuttgart.
Wannier, M. \& Panchaud, R. (1977): Catalogue des fossiles originaux conservés dans les collections de l'École cantonale de Porrentruy et du Progymnase de Delémont. - Eclog. geol. Helv., 70: 919-932; Lausanne.
Weir, J. (1938): The Jurassic faunas of Kenya with descriptions of some Brachiopoda and Mollusca. - Monogr. geol. Dep. Hunter. Mus., Nr. 5: 17-60; Glasgow.
Wellnhofer, P. (1964): Zur Pelecypodenfauna der Neuburger Bankkalke (Mittel-Tithon). - Abh. bayer. Akad. Wiss. (N. S.), Nr. 119: 143 pp; München.

Wendt, J. (1963): Stratigraphisch-paläontologische Untersuchungen im Dogger Westsiziliens. - Boll. Soc. paleont. ital, 2: 57-145; Modena.

- (1971): Genese und Fauna submariner sedimentärer Spaltenfüllungen im Mediterranen-Jura. - Palaeontographica (A), 136: 122-192; Stuttgart.
Whidborne, G. F. (1883): Notes on some fossils, chiefly Mollusca, from the Inferior Oolite. - Q. JI. geol. Soc. Lond., 39: 487-540; London.
Wiborg, K. F. (1963): Some observations of the Iceland scallop Chlamys islandica (Muller) in Norwegian waters. - FiskDir. Skr. Serie Havundersoketser, 13: 38-53; Bergen.
Wilson, R. C. L. (1968): Upper Oxfordian palaeogeography of southern England. - Palaeogeogr. Palaeoclimatol. Palaeoecol., 4: 5-28; Amsterdam.
Winkler, G. G. (1861): Der Oberkeuper nach Studien in den bayrischen Alpen. - Z. dt. geol. Ges., 13: 459-521; Berlin.
- (1886): Neue Nachweise über den untern Lias in den bairischen Alpen. - Neues Jb. Miner. Geol. Paläont., 2: 1-34; Stuttgart.
Witchell, E. (1880): Notes on a section of Stroud Hill and the Upper Ragstone Beds of the Cotteswolds. - Proc. Cotteswold Nat. Fid. Club, Year 1880: 117-135; Gloucester.
Wobber, F. J. (1968): A faunal analysis of the Lias (Lower Jurassic) of South Wales (Great Britain). - Palaeogeogr. Palaeoclimatol. Palaeoecol., 5: 269-308; Amsterdam.
Woodward, H. B. (1893): The Jurassic rocks of Britain. Vol. III. The Lias of England and Wales (Yorkshire excepted). - Mem. geol. Surv. U. K.: 399 pp; London.
- (1894): The Jurassic rocks of Britain. Vol. IV. The Lower Oolitic rocks of England (Yorkshire excepted). - Mem. geol. Surv. U. K.: 628 pp; London.
Worssam, B. C. \& Ivimey-Cook, H. C. (1971): The stratigraphy of the Geological Survey borehole at Warlingham, Surrey. Bull. geol. Surv. Gt. Br., Nr. 36: 111 pp; London.
Wright, J. K. (1972): The stratigraphy of the Yorkshire Corallian. Proc. Yorks. geol. Soc., 39: 225-266; Hull.
- - (1977): The Cornbrash Formation (Callovian) in North Yorkshire and Cleveland. - Proc. Yorks. geol. Soc., 41: 325-346; Hull.
Wright, R. P. (1974): Jurassic bivalves from Wyoming and South Dakota: A study of feeding relationships. - J. Paleonr. 48: 425-433; Lawrence.
YAMANI, S. - A. (1975): Bivalven-fauna der Korallenkalke von Laisakker bei Neuburg a. d. Donau. Unteres Tithonium, Bayern. Palaeontographica (A), 149:31-118; Stuttgart.
Yin, T.-H. (1931): Étude de la faune Tithonique coralligène du Gard et de l'Hérault. - Trav. Lab. Géol. Univ. Lyon, 17, Nr. 14: 20 pp ; Lyon.
Yonge, C. M. (1951): Observations on Hinnites multirugosus. Studies on Pacific coast mollusks. III. - Univ. Calif. Publs. Zool., 55: 409-420; Berkeley.
- (1967): Obscrvations on Pedum spondyloidem (Chemnitz) Gmelin, a scallop associated with reef-building corals. - Proc. malac. Soc. Lond., 37: 311-323; London.
YOUNG, G. \& BiRD, J. (1822): A geological survey of the Yorkshire coast. -336 pp ; Whitby (Clark). 2nd. ed. (1828): 364 pp .

Zakharov, V. A. (1966): Late Jurassic and Cretaceous bivalve molluscs of northern Siberia. - 110 pp; Moskva (Nauka).
Zakharov, V. A. \& Meseznikov, M. S. (1974): The Volgian stage of the subarctic Urals. - 176 pp; Moskva (Nauka).

Zieten, C. H. von (1830-33): Die Versteinerungen Württembergs. $-(1), 1830: 1-16 ;(2), 1831: 17-32 ;(3), 1832: 33-64 ;(4), 1833:$ 65-96; Stuttgart.

Species described from the European Jurassic but not discussed in the systematic section of this work (see p. 17)

Pecten Insularum D'Orbigny 1850
P. nudus Buvignier 1852
P. Kralikii Contejean 1859
P. Jamacensis Coquand 1860
P. delessei Étallon in Thurmann and Étallon 1862
P. pauciplicatus Schlonbach 1863
P. mica Dumortier 1869
P. Stoliczkai Gemmellaro 1874
P. acrorysus Gemmellaro and Di Blasi 1874
P. billiemensis Gemmellaro and Di Blasi 1874
P. diplopsides Gemmellaro and Di Blasi 1874
P. grammoprotticus Gemmellaro and Di Blasi 1874
P. nebrodensis Gemmellaro and Di Blasi 1874
P. oppeli Gemmeliaro and Di Blasi 1874
P. polyzonites Gemmellaro and Di Blasi 1874
P. siculus Gemmellaro and Di Blasi 1874
P. zitteli Gemmellaro and Di Blasi 1874
P. (Amusium) cryptozonus Gemmellaro and Dı Blasi in Gemmellaro 1878
P. (A.) megalotus Gemmellaro and Di Blasi in Gemmellaro 1878
P. clare rugatus Военм 1883
P. fraudator Военм 1883
P. spitzbergensis Lundgren 1883
P. indisus De Gregorio 1886b
P. permitinus De Gregorio 1886b
P. supradubius De Gregorio 1886b
P. leucus De Gregorio 1886d
P. Zwingensis De Loriol 1895

Chlamys meriani Greppin 1899
Ch. peticlerci Greppin 1899
P. lima Fucini 1906

Ch. janiroides Cossmann 1907a
P. polycyclus Blaschke 1911
P. (Entolitm) Beneckei Rollier 1911
P. (Neithea ?) Rollieri Cossmann 1916
P. Nalivinki Borissiak and Ivanoff 1917
P. Borissiaki Khudyaev 1928

APPENDIX II

Derivation of I_{50} Values
The moment of inertia ($\left[\lambda_{/ 2}\right]$) for a half wavelength of any given sinusoidal corrugation can be calculated using the following formula from Timoshenko and Woinowsky-Krieger (1959): -

Where $\mathrm{f}=$ amplitude (in mm.)
$\mathrm{h}=$ thickness of material (in mm.)
$1=\frac{\lambda}{2}(\mathrm{in} \mathrm{mm}$.
Multiplication by $\frac{100}{\lambda}$ yields a value for a 50 mm length of corrugated section $\left(\mathrm{I}_{50}\right)$.
In text fig. 8 the author has resolved into lines of equal 1_{50} the results of calculations within the ranges: amplitude $0-5 \mathrm{~mm}$, wavelength $1-40 \mathrm{~mm}$, thickness of material $0.1-5 \mathrm{~mm}$.

[^0]: *Dr. Andrew L. A. Johnson, University of Leicester, Department of Geology, University Road, Leicester, LE1 7RH, England.

[^1]: Size of the antero- and posterodorsal disc gapes has therefore not been considered. This might be thought to represent an important omission in connection with the swimming paradigm. In fact it is

[^2]: 'P.' Phillipsti Voctz proposed, like 'P.' cingulutus Gold. us, for ' P.' sp. Phillops and applied to unfigured Bathonian

[^3]: The spinose ornament on the right valve of Ch . (Ch.) pollux almost certainly did not act as an adaptation for a late ontogenetic reclining phase either in the form of an anchor or as a device to prevent sinking into the sediment (see p. 83). The low environmental

[^4]: Text fig. 191: Radulopecten fibrosus - posterior hinge length/length.

